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Abstract. A tutorial is presented outlining the evolution, theory, and application of rolling-

element bearing life prediction from that of A. Palmgren, 1924, W. Weibull, 1939, G. 

Lundberg and A. Palmgren, 1947 and 1952, E. Ioannides and T. Harris, 1985, and E. 

Zaretsky, 1987. Comparisons are made between these life models. The Ioannides-Harris 
model without a fatigue limit is identical to the Lundberg-Palmgren model. The Weibull 

model is similar to that of Zaretsky if the exponents are chosen to be identical. Both the load-

life and Hertz stress-life relations of Weibull, Lundberg and Palmgren, and Ioannides and 

Harris reflect a strong dependence on the Weibull slope. The Zaretsky model decouples the 

dependence of the critical shear stress-life relation from the Weibull slope. This results in a 

nominal variation of the Hertz stress-life exponent.  

For 9th- and 8th-power Hertz stress-life exponents for ball and roller bearings, 

respectively, the Lundberg-Palmgren model best predicts life. However, for 12th- and 10th-

power relations reflected by modern bearing steels, the Zaretsky model based on the Weibull 
equation is superior. Under the range of stresses examined, the use of a fatigue limit would 

suggest that (for most operating conditions under which a rolling-element bearing will 

operate) the bearing will not fail from classical rolling-element fatigue. Realistically, this is 

not the case. The use of a fatigue limit will significantly overpredict life over a range of 

normal operating Hertz stresses. (The use of ISO 281:2007 with a fatigue limit in these 

calculations would result in a bearing life approaching infinity.) Since the predicted lives of 

rolling-element bearings are high, the problem can become one of undersizing a bearing for a 

particular application. 

Rules had been developed to distinguish and compare predicted lives to those actually 
obtained. Based upon field and test results of 51 ball and roller bearing sets, 98 percent of 

these bearing sets had acceptable life results using the Lundberg-Palmgren equations with 

life adjustment factors to predict bearing life. That is, they had lives equal to or greater than 

that predicted. 

The Lundberg-Palmgren model was used to predict the life of a commercial turboprop 

gearbox. The life prediction was compared with the field lives of 64 gearboxes. From these 

results, the roller bearing lives exhibited a load-life exponent of 5.2, which correlated with 
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the Zaretsky model. The use of the ANSI/ABMA and ISO standards load-life exponent of 

10/3 to predict roller bearing life is not reflective of modern roller bearings and will 

underpredict bearing lives.  

 

Introduction  
 

By the close of the 19th century, the rolling-element bearing industry began to 

focus on sizing of ball and roller bearings for specific applications and determining 

bearing life and reliability. In 1896, R. Stribeck [1] in Germany began fatigue 

testing full-scale rolling-element bearings. J. Goodman [2] in 1912 in Great Britain 

published formulae based on fatigue data that would compute safe loads on ball 

and cylindrical roller bearings. In 1914, the ñAmerican Machinists Handbookò [3], 

devoted 6 pages to rolling-element bearings that discussed bearing sizes and 

dimensions, recommended (maximum) loading, and specified speeds. However, 

the publication did not address the issue of bearing life. During this time, it would 

appear that rolling-element bearing fatigue testing was the only way to determine 

or predict the minimum or average life of ball and roller bearings. 

In 1924, A. Palmgren [4] in Sweden published a paper in German outlining his 

approach to bearing life prediction and an empirical formula based upon the 

concept of an L10 life, or the time that 90 percent of a bearing population would 

equal or exceed without rolling-element fatigue failure. During the next 20 years 

he empirically refined his approach to bearing life prediction and matched his 

predictions to test data [5]. However, his formula lacked a theoretical basis or an 

analytical proof. 

In 1939, W. Weibull [6,7] in Sweden published his theory of failure. Weibull 

was a contemporary of Palmgren and shared the results of his work with him. In 

1947, Palmgren in concert with G. Lundberg, also of Sweden, incorporated his 

previous work along with that of Weibull and what appears to be the work of H. 

Thomas and V. Hoersch [8] into a probabilistic analysis to calculate rolling-

element (ball and roller) life. This has become known as the Lundberg-Palmgren 

theory [9,10]. (In 1930, H. Thomas and V. Hoersch [8] at the University of Illinois, 

Urbana, developed an analysis for determining subsurface principal stresses under 

Hertzian contact [11]. Lundberg and Palmgren [9,10] do not reference the work of 

Thomas and Hoersch [8] in their papers.)  

The Lundberg-Palmgren life equations have been incorporated into both the 

International Organization for Standardization (ISO) and the American National 

Standards Institute (ANSI)/American Bearing Manufacturers Association 

(ABMA)
1
 standards for the load ratings and life of rolling-element [12 to 14] as 

well as in current bearing codes to predict life. 

                                                   
1ABMA changed their name from the Anti-Friction Bearing Manufacturers Association (AFBMA) in 1993. 
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In the post World War II era the major technology drivers for improving the 

life, reliability, and performance of rolling-element bearings have been the jet 

engine and the helicopter. By the late 1950s most of the materials used for bearings 

in the aerospace industry were introduced into use. By the early 1960s the life of 

most steels was increased over that experienced in the early 1940s primarily by the 

introduction of vacuum degassing and vacuum melting processes in the late 1950s 

[15]. 

The development of elastohydrodynamic (EHD) lubrication theory in 1939 by 

A. Ertel [16] and later A. Grubin [17] in 1949 in Russia showed that most rolling 

bearings and gears have a thin EHD film separating the contacting components. 

The life of these bearing and gears is a function of the thickness of the EHD film 

[15]. 

Computer programs modeling bearing dynamics that incorporate probabilistic 

life prediction methods and EHD theory enable optimization of rolling-element 

bearings based on life and reliability. With improved manufacturing and material 

processing, the potential improvement in bearing life can be as much as 80 times 

that attainable in the late 1950s or as much as 400 times that attainable in 1940 

[15]. 

While there can be multifailure modes of rolling-element bearings, the failure 

mode limiting bearing life is contact (rolling-element) surface fatigue of one or 

more of the running tracks of the bearing components. Rolling-element fatigue is 

extremely variable but is statistically predictable depending on the material (steel) 

type, the processing, the manufacturing, and operating conditions [18]. 

Rolling-element fatigue life analysis is based on the initiation or first evidence 

of fatigue spalling on a loaded, contacting surface of a bearing. This spalling 

phenomenon is load cycle dependent. Generally, the spall begins in the region of 

maximum shear stresses, located below the contact surface, and propagates into a 

crack network. Failures other than that caused by classical rolling-element fatigue 

are considered avoidable if the component is designed, handled, and installed 

properly and is not overloaded [18]. However, under low EHD lubricant film 

conditions, rolling-element fatigue can be surface or near-surface initiated with the 

spall propagating into the region of maximum shearing stresses. 

The database for ball and roller bearings is extensive. A concern that arises 

from these data and their analysis is the variation between life calculations and the 

actual endurance characteristics of these components. Experience has shown that 

endurance tests of groups of identical bearings under identical conditions can 

produce a variation in L10 life from group to group. If a number of apparently 

identical bearings are tested to fatigue at a specific load, there is a wide dispersion 

of life among these bearings. For a group of 30 or more bearings, the ratio of the 
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longest to the shortest life may be 20 or more [18]. This variation can exceed 

reasonable engineering expectations. 

 

Bearing life theory 
 

Foundation for bearing life prediction 
 

Hertz contact stress theory 

 

In 1917, Arvid Palmgren began his career at the A.ïB. Svenska Kullager-

Fabriken (SKF) bearing company in Sweden. In 1924 he published his paper [4] 

that laid the foundation for what later was to become known as the Lundberg-

Palmgren theory [9]. Because the 1924 paper was missing two elements, it did not 

allow for a comprehensive rolling-element bearing life theory. The first missing 

element was the ability to calculate the subsurface principal stresses and hence, the 

shear stresses below the Hertzian contact of either a ball on a nonconforming race 

or a cylindrical roller on a race. The second missing element was a comprehensive 

life theory that would fit the observations of Palmgren. Palmgren discounted Hertz 

contact stress theory [11] and depended on the load-life relation for ball and roller 

bearings based on testing at SFK Sweden that began in 1910 [19]. Zaretsky 

discusses the 1924 Palmgren work in [20]. 

Palmgren did not have confidence in the ability of the Hertzian equations to 

accurately predict rolling bearing stresses. Palmgren [4] states, ñThe calculation of 

deformation and stresses upon contact between the curved surfaceséis based on a 

number of simplifying stipulations, which will not yield very accurate 

approximation values, for instance, when calculating the deformations. Moreover, 

recent investigations (circa 1919ï1923) made at A.ïB. Svenska Kullager-Fabriken 

(SKF) have proved through calculation and experiment that the Hertzian formulae 

will not yield a generally applicable procedure for calculating the material 

stresses.éAs a result of the paramount importance of this problem to ball bearing 

technology, comprehensive in-house studies were performed at SKF in order to 

find the law that describes the change in service life that is caused by changing 

load, rpm, bearing dimensions, and the like. There was only one possible approach: 

tests performed on complete ball bearings. It is not acceptable to perform 

theoretical calculations only, since the actual stresses that are encountered in a ball 

bearing cannot be determined by mathematical means.ò 

Palmgren later recanted his doubts about the validity of Hertz theory and 

incorporated the Hertz contact stress equation in his 1945 book [5]. In their 1947 

paper [9], Lundberg and Palmgren state, ñHertz theory is valid under the 
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assumptions that the contact area is small compared to the dimensions of the 

bodies and that the frictional forces in the contact areas can be neglected. For ball 

bearings, with close conformity between rolling elements and raceways, these 

conditions are only approximately true. For line contact the limit of validity of the 

theory is exceeded whenever edge pressure occurs.ò 

Lundberg and Palmgren exhibited a great deal of insight as to the other 

variables modifying the resultant shear stresses calculated from Hertz theory. They 

state [9], ñNo one yet knows much about how the material reacts to the 

complicated and varying succession of (shear) stresses which then occur, nor is 

much known concerning the effect of residual hardening stresses or how the 

lubricant affects the stress distribution within the pressure area. Hertz theory also 

does not treat the influence of those static stresses which are set up by the 

expansion or compression of the rings when they are mounted with tight fits.ò 

These effects are now understood, and life factors are currently being used to 

account for them so as to more accurately predict bearing life and reliability [18]. 

 

Equivalent Load 

 

Palmgren [4] recognized that it was necessary to account for combined and 

variable loading around the circumference of a ball bearing. He proposed a 

procedure in 1924 ñto establish functions for the service life of bearings under 

purely radial load and to establish rules for the conversion of axial and 

simultaneous effective axial and radial loads into purely radial loads.ò Palmgren 

used Stribeckôs equation [1] to calculate what can best be described as a stress on 

the maximum radially loaded ball-race contact in a ball bearing. The equation 

attributed to Stribeck by Palmgren is as follows: 

 

2

5

Zd

Q
k=                                                                                                                  (1) 

 

where Q is the total radial load on the bearing, Z is the number of balls in the 

bearing, d is the ball diameter, and k is Stribeckôs constant. 

Palmgren modified Stribeckôs equation to include the effects of speed and load 

as well as modifying the ball diameter relation. For brevity, this modification is not 

presented. It is not clear whether Palmgren recognized at that time that Stribeckôs 

equation was valid only for a diametral clearance greater than zero with fewer than 

half of the balls being loaded. However, he stated that the corrected constant 

yielded good agreement with tests performed. 
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Palmgren [4] states, ñIt is probably impossible to find an accurate and, at the 

same time, simple expression for the ball pressure as a function of radial and axial 

pressureéò According to Palmgren, ñAdequately precise results can be obtained 

by using the following equation: 

 

yARQ +=                                                                                                              (2) 

 

where Q is the imagined, purely radial load that will yield the same service life as 

the simultaneously acting radial and axial forces, R is the actual radial load, and A 

is the actual axial load.ò For ball bearings, Palmgren presented values of y as a 

function of Stribeckôs constant k. Palmgren stated that these values of y were 

confirmed by test results [4].  

By 1945, Palmgren [5] modified Eq. (2) as follows: 

 

areq YFXFPQ +==                                                                                             (3) 

 

where 

 

 Peq  the equivalent load 

 Fr  the radial component of the actual load 

 Fa  the axial component of the actual load 

 X  a rotation factor 

 Y  the thrust factor of the bearing 

 

The rotation factor X is an expression for the effect on the bearing capacity of 

the conditions of rotation. The thrust factor Y is a conversion value for thrust loads 

[5]. 

 

Fatigue Limit  

 

Palmgren [4] states that bearing ñlimited service life is primarily a fatigue 

phenomenon. However, under exceptional high loads there will be additional 

factors such as permanent deformations, direct fractures, and the like.éIf we start 

out from the assumption that the material has a certain fatigue limit, meaning that it 

can withstand an unlimited number of cyclic loads on or below a certain, low level 

of load, the service life curve will be asymptotic. Since, moreover, the material has 

an elastic limit and/or fracture limit, the curve must yield a finite load even when 

there is only a single load value, meaning that the number of cycles equals zero. If 

we further assume that the curve has a profile of an exponential function, the 
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general equation for the relationship existing between load and number of load 

cycles prior to fatigue would read: 

 

( ) ueanCk
x
++=

-
                                                                                               (4) 

 

where k is the specific load or Stribeckôs constant, C is the material constant, a is 

the number of load cycles during one revolution at the point with the maximum 

load exposure, n is the number of revolutions in millions, e is the material constant 

that is dependent on the value of the elasticity or fracture limit, u is the fatigue 

limit, and x is an exponent.ò 

According to Palmgren, ñThis exponent x is always located close to 1/3 or 0.3. 

Its value will approach 1/3 when the fatigue limit is so high that it cannot be 

disregarded, and 0.3 when it is very low.ò Palmgren reported test results that 

support a value of x = 1/3. Hence, Eq. (4) can be written as 
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The value e suggests a finite time below which no failure would be expected to 

occur. By letting e = 0 and eliminating the concept of a fatigue limit for bearing 

steels, Eq. (5) can be rewritten as 
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In Eq. (6), by letting fc = C/5, and Peq = Q, the 1924 version of the dynamic load 

capacity CD for a radial ball bearing would be 

 

2ZdfC cD =                                                                                                           (7) 

 

and Eq. (6) becomes 
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where L10 is the life in millions of inner-race revolutions, at which 10 percent of a 

bearing population will have failed and 90 percent will have survived. This is also 

referred to as 10-percent life or L10 life. 

By 1945, Palmgren [5] empirically modified the dynamic load capacity CD for 

ball and roller bearings as follows: 

For ball bearings 

 

d

Zid
fC cD

02.01

cos3
22

+

b
=                                                                                            (9) 

 

For roller bearings 

 

b= cos3
22 ZlidfC tcD                                                                                        (10) 

 

where 

 

 fc  material-geometry coefficient
2
 

 i  number of rows of rolling elements (balls or rollers) 

 d  ball or roller diameter 

 lt  roller length 

 Z  number of rolling elements (balls or rollers) in a row i 

 ɓ  bearing contact angle 

 

From Anderson [21], for a constant bearing load, the normal force between a 

rolling element and a race will be inversely proportional to the number of rolling 

elements. Therefore, for a constant number of stress cycles at a point, the capacity 

is proportional to the number of rolling elements. Alternately, the number of stress 

cycles per revolution is also proportional to the number of rolling elements, so that 

for a constant rolling-element load the capacity for point contact is inversely 

proportional to the cube root of the number of rolling elements. This comes from 

the inverse cubic relation between load and life for point contact. Then the 

dynamic load capacity varies with number of balls as 

 

3
2

3
1

~ Z

Z

Z
CD =                                                                                                  (11) 

 

                                                   
2 Post 1990, the coefficient fc is designated as fcm in the ANSI/ABMA/ISO standards [12 to 14]. 
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Equation (11) is reflected in the dynamic load capacity of Eqs. (9) and (10). 

According to Palmgren [5], the coefficient fc (in Eqs. (9) and (10)) is dependent, 

among other things, on the properties of the material, the degree of osculation 

(bearing race-ball conformity), and the reduction in capacity on account of uneven 

load distribution within multiple row bearings and bearings with long rollers. The 

magnitude of this coefficient can be determined only by numerous laboratory tests. 

It has one definite value for all sizes of a given bearing type.  

In all of the above equations, the units of the input variables and the resultant 

units used by Palmgren have been omitted because they cannot be reasonably used 

or compared with engineering practice today. As a result, these equations should be 

considered only for their conceptual content and not for any quantitative 

calculations. 

 

L10 life 

 

The L10 life, or the time that 90 percent of a group of bearings will exceed 

without failing by rolling-element fatigue, is the basis for calculating bearing life 

and reliability today. Accepting this criterion means that the bearing user is willing 

in principle to accept that 10 percent of a bearing group will fail before this time. 

In Eq. (8) the life calculated is the L10 life. 

The rationale for using the L10 life was first laid down by Palmgren in 1924. He 

states [4], ñThe (material) constant C (Eq. (4)) has been determined on the basis of 

a very great number of tests run under different types of loads. However, certain 

difficulties are involved in the determination of this constant as a result of service 

life demonstrated by the different configurations of the same bearing type under 

equal test conditions. Therefore, it is necessary to state whether an expression is 

desired for the minimum, (for the) maximum, or for an intermediate service life 

between these two extremes.éIn order to obtain a good, cost effective result, it is 

necessary to accept that a certain small number of bearings will have a shorter 

service life than the calculated lifetime, and therefore the constants must be 

calculated so that 90 percent of all the bearings have a service life longer than that 

stated in the formula. The calculation procedure must be considered entirely 

satisfactory from both an engineering and a business point of view, if we are to 

keep in mind that the mean service life is much longer than the calculated service 

life and that those bearings that have a shorter life actually only require repairs by 

replacement of the part which is damaged first.ò 

Palmgren is perhaps the first person to advocate a probabilistic approach to 

engineering design and reliability. Certainly, at that time, engineering practice 

dictated a deterministic approach to component design. This approach by Palmgren 

was decades ahead of its time. What he advocated is designing for finite life and 
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reliability at an acceptable risk. This concept was incorporated in the ANSI/ABMA 

and ISO standards [12 to 14]. 

 

Linear damage rule 

 

Most bearings are operated under combinations of variable loading and speed. 

Palmgren recognized that the variation in both load and speed must be accounted 

for in order to predict bearing life. Palmgren reasoned: ñIn order to obtain a value 

for a calculation, the assumption might be conceivable that (for) a bearing which 

has a life of n million revolutions under constant load at a certain rpm (speed), a 

portion M/n of its durability will have been consumed. If the bearing is exposed to 

a certain load for a run of M1 million revolutions where it has a life of n1 million 

revolutions, and to a different load for a run of M2 million revolutions where it will 

reach a life of n2 million revolutions, and so on, we will obtain 

 

Ễ ρ                                                                                                               (12) 

 

In the event of a cyclic variable load we obtain a convenient formula by 

introducing the number of intervals p and designate m as the revolutions in 

millions that are covered within a single interval. In that case we have 
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where n still designates the total life in millions of revolutions under the load and 

rpm (speed) in question (and M in Eq. (12) equal pm.ò 

Equations (12) and (13) were independently proposed for conventional fatigue 

analysis by B. Langer [22] in 1937 and M. Miner [23] in 1945, 13 and 21 years 

after Palmgren, respectively. The equation has been subsequently referred to as the 

linear damage rule or the Palmgren-Langer-Miner rule. For convenience, the 

equation can be written as follows: 
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and 
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1321 =+++ nXXXX 2                                                                                    (15) 

 

where L is the total life in stress cycles or race revolutions, L1éLn is the life at a 

particular load and speed in stress cycles or race revolutions, and X1éXn is the 

fraction of total running time at load and speed. The values of M1, M2, etc. in Eq. 

(12) equal X1L, X2L, etc. from Eq. (14). Equation (14) is the basis for most 

variable-load fatigue analysis and is used extensively in bearing life prediction. 

 

Weibull analysis 
 

Weibull distribution f unction 

 

In 1939, W. Weibull [6,7] developed a method and an equation for statistically 

evaluating the fracture strength of materials based upon small population sizes. 

This method can be and has been applied to analyze, determine, and predict the 

cumulative statistical distribution of fatigue failure or any other phenomenon or 

physical characteristic that manifests a statistical distribution. The dispersion in life 

for a group of homogeneous test specimens can be expressed by  
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where S is the probability of survival as a fraction (0 Ò S Ò 1); e is the slope of the 

Weibull plot; L is the life cycle (stress cycles); Lµ is the location parameter, or the 

time (cycles) below which no failure occurs; and Lb is the characteristic life (stress 

cycles). The characteristic life is that time at which 63.2 percent of a population 

will fail, or 36.8 percent will survive. 

The format of Eq. (16) is referred to as a three-parameter Weibull analysis. For 

mostðif not allðfailure phenomenon, there is a finite time period under operating 

conditions when no failure will occur. In other words, there is zero probability of 

failure, or a 100-percent probability of survival, for a period of time during which 

the probability density function is nonnegative. This value is represented by the 

location parameter Lm. Without a significantly large data base, this value is difficult 

to determine with reasonable engineering or statistical certainty. As a result, Lm is 

usually assumed to be zero and Eq. (16) can be written as 
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This format is referred to as the two-parameter Weibull distribution function. 

The estimated values of the Weibull slope e and Lb for the two-parameter Weibull 

analysis may not be equal to those of the three-parameter analysis. As a result, for 

a given survivability value S, the corresponding value of life L will be similar but 

not necessarily the same in each analysis.  

By plotting the ordinate scale as ln ln(1/S) and the abscissa scale as ln L, a 

Weibull cumulative distribution will plot as a straight line, which is called a 

ñWeibull plot.ò Usually, the ordinate is graduated in statistical percent of 

specimens failed F where F = [(1 ï S) × 100]. Figure 1(a) is a generic Weibull plot 

with some of the values of interest indicated. Figure 1(b) is a Weibull plot of actual 

bearing fatigue data. The derivation of the Weibull distribution function can be 

found in Appendix A. 

The Weibull plot can be used to evaluate any phenomenon that results in a 

statistical distribution. The tangent of the resulting plot, called the ñWeibull slopeò 

(also called the ñWeibull shape parameterò or ñWeibull modulusò) and designated 

by e, defines the statistical distribution. Weibull slopes of 1, 2, and 3.57 represent 

exponential, Rayleigh, and Gaussian (normal) distributions, respectively. 

The scatter in the data is inversely proportional to the Weibull slope; that is, the 

lower the value of the Weibull slope, the larger the scatter in the data, and vice 

versa. The Weibull slope is also liable to statistical variation depending on the 

sample size (data base) making up the distribution [24]. The smaller the sample 

size, the greater the statistical variation in the slope. 

A true fit of a two-parameter Weibull distribution function (Fig. 1) would imply 

a zero minimum life of Lm = 0 in Eq. (16). Tallian [25] analyzed a composite 

sample of 2500 rolling-element bearings and concluded that a good fit was 

obtained in the failure probability region between 10 and 60 percent. Outside this 

region, experimental life is longer than that obtained from the two-parameter 

Weibull plot prediction. In the early failure region, bearings were found to behave 

as shown in Fig. 2. From the Tallian data, it was found that the location parameter 

for the three-parameter Weibull distribution of Eq. (16) is 0.053 L10, where L10 is 

that value obtained from the two-parameter Weibull plot (Eq. (17) and Fig. 1) [15]. 
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Figure 1. Weibull plot where (Weibull) slope or tangent of line is e; probability of 

survival, Sɓ, is 36.8 percent at which L = Lɓ, or L = Lɓ = 1. (a) Schematic. (b) Rolling-

element bearing fatigue data. 
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Figure 2. Two-parameter Weibull plot of bearing life distribution in early failure region 

[25]. 

 

Weibull f racture strength model 

 

Weibull [6,7,26,27] related the material strength to the volume of the material 

subjected to stress. If the solid were to be divided in an arbitrary manner into n 

volume elements, the probability of survival for the entire solid can be obtained by 

multiplying the individual survivabilities together as follows 

 

nSSSSS 3321 ÖÖ=                                                                                              (18) 

 

where the probability of failure F is 

 

SF -=1                                                                                                               (19) 

 

Weibull further related the probability of survival S, the material strength s, and 

the stressed volume V according to the following relation 

 

()ñ=V
dVXf

S

1
ln                                                                                                 (20) 
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where 

 

() eXf s=                                                                                                             (21) 

 

For a given probability of survival S, 
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From Eq. (22), for the same probability of survival the components with the larger 

stressed volume will have lower strength (or shorter life). 

 

Bearing life models 
 

Weibull fatigue life model 
 

In conversations E.V. Zaretsky had with W. Weibull on January 22, 1964, 

Weibull related that he suggested to his contemporaries A. Palmgren and G. 

Lundberg in Gothenberg, Sweden (circa 1944), to use his equation (Eq. (20)) to 

predict bearing (fatigue) life where  

 

() ecXf ht=                                                                                                          (23) 

 

and where t is the critical shear stress and ɖ is the number of stress cycles to 

failure. 

In the past E.V. Zaretsky has credited this relation to Weibull. However, there 

appears to be no documentation of the above nor any publication of the application 

of Eq. (23) by Weibull in the open literature. However, in [28] Poplawski et al. 

applied Eq. (23) to Eq. (20) where 
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The parameter c/e is the stress-life exponent. This implies that the inverse 

relation of life with stress is a function of the life scatter (Weibull slope) or data 

dispersion.  
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Referring to Figs. 3 and 4 for point contact and line contact, respectively, the 

stressed volume [9] is defined as  

 

Point contact: zlaV L=                                                                                      (25a) 

 

Line contact: zllV t L=                                                                                       (25b) 

 

 
 

Figure 3. Ball-race model for point contact. 

 

 

 

 
 

Figure 4. Roller-race model for line contact. 
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The depth z to the critical shear stress t below the Hertzian contact in the 

running track is shown in Fig. 5. The length of the running track is lL, and lt is the 

roller width. 

The critical shearing stress can be any one or a combination of the maximum 

shearing stress, tmax, the maximum orthogonal shearing stress, to, the octahedral 

shearing stress toct, or the von Mises shearing stress tVM. The von Mises shearing 

stress is a variation of the octahedral shearing stress. 

From Hertz theory [11,29] for point contact (Fig. 3), V and t can be expressed 

as a function of the maximum Hertz (contact) stress, Smax [29], where  

 

max~ St                                                                                                              (26a) 

 

2
max~ SV                                                                                                             (26b) 

 

Substituting Eqs. (26a) and (26b) in Eq. (24) and L for ɖ,  
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From [28], solving for the value of the exponent n for point contact (ball in a 

raceway) from Eq. (27) gives 
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c
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From Hertz theory for line contact (roller in a raceway, Fig. 4),  

 

max~ SV                                                                                                             (29) 

 

Substituting Eqs. (26a) and (29) in Eq. (24) and L for ɖ, 
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Figure 5. Subsurface stress field under line contact. (a) Hertz stress distribution for roller 

on raceway showing principal stresses at distance z below surface. (b) Distribution of 

principal and shearing stress as a function of depth z below surface. 
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Solving for the value of n for line contact by substituting Eqs. (25a) and (28) into 

Eq. (26) gives  

 

e

c
n

1+
=                                                                                                              (31) 

 

From Lundberg and Palmgren [9] for point contact, c = 10.33 and e = 1.11. 

Then from Eq. (28), 

 

12.11
11.1

233.102
=

+
=

+
=

e

c
n                                                                              (32) 

 

From Hertz theory [29] for point contact,  

 

3
1

~max PS                                                                                                           (33) 

 

From Eq. (27) for point contact, 
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Combining Eqs. (33) and (34a) for point contact, and solving for p, 

 

e
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From Eq. (32) where n = 11.12, 

 

7.3
3
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For line contact from Eq. (31), 
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c
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From Eq. (30) for line contact, 
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p
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                                                                                                   (36a) 

 

From Hertz theory [29] for line contact,  
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~max PS                                                                                                         (36b) 

 

Combining Eqs. (36a) and (36b) and solving for p for line contact, 
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In their 1952 publication [10], Lundberg and Palmgren assume e for line 

contact equals 1.125, then from Eq. (35) n = 10.1, and from Eq. (36c) p = 5. From 

Weibull, the values of the stress-life and the load-life exponents are dependent on 

the Weibull slope e, which for rolling-element bearings can and usually varies 

between 1 and 2. As a result, the values can be only valid for a single value of the 

Weibull slope. As an example, if in Eq. (32) for point contact, a Weibull slope e of 

1.02 were selected, n = 12 and p = 4 from Eq. (34b). These values did not fit the 

bearing data base that existed in the 1940s. 

 

Lundberg-Palmgren model 
 

In 1947 Lundberg and Palmgren [9] applied the Weibull analysis to the 

prediction of rolling-element bearing fatigue life. In order to account for the 

variation between the values of the Hertz stress-life exponent n and the load-life 

exponent p from those experimentally determined at the time, they introduced 

another variable, the depth to the critical shearing stress z to the h power where f(x) 

in Eq. (20) can be expressed as 
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z
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=                                                                                                          (37) 

 

The rationale for introducing z
h
 was that it took a finite time period for a crack 

to initiate at a distance from the depth of the critical shearing to the rolling surface. 

Lundberg and Palmgren assumed that the time for crack propagation was a 

function of z
h
. 
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Equation (24) thus becomes 

 

[]e
hee

c

z
V

1

11
~ ù

ú

ø
é
ê

è
ù
ú

ø
é
ê

è

t
h                                                                                           (38) 

 

For their critical shearing stress, Lundberg and Palmgren chose the orthogonal 

shearing stress. From Hertz theory [29], 

 

max~ Sz                                                                                                               (39) 

 

For point contact, substituting Eqs. (26a), (26b), and (39) in Eq. (38) and L for ɖ, 
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From [28], solving for the value of the exponent n for point contact (ball on a 

raceway) from Eq. (40) gives 
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                                                                                                       (41a) 

 

From Lundberg and Palmgren [9], using values of 1.11 for e, c = 10.33, and h = 

2.33, from Eq. (41a) for point contact 
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From Eq. (34b) for point contact, where n = 9,  
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For line contact, substituting Eqs. (26a), (29), and (39) in Eq. (38) and L for ɖ, 
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From Eq. (42) solving for n for line contact, 
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Using previous values of c and h, and e = 1.125 for line contact, 
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From Eq. (36b) for line contact, 
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These values of n and p for point and line contacts correlated to the then-existing 

rolling-element bearing database. 

In their 1952 paper [10], Lundberg and Palmgren modified their value of the 

load-life exponent p for roller bearings from 4 to 10/3. The rationale for doing so 

was that various roller bearing types had one contact that is line contact and other 

that is point contact. They state ñ. . . as a rule the contacts between the rollers and 

the raceways transforms from a point to a line contact for some certain load so that 

the life exponent varies from 3 to 4 for differing loading intervals within the same 

bearing.ò The ANSI/ABMA and ISO standards [12,14] incorporate p = 10/3 for 

roller bearings. Computer codes for rolling-element bearings incorporate p = 4. 

 

Strict series reliability  

 

Figures 6 and 7 show schematics of deep-groove and angular-contact ball 

bearings. Figure 8 is a schematic of a roller bearing. From Eqs. (20) and (30), the 

fatigue life L of a bearing inner or outer race determined from the Lundberg-

Palmgren theory [9] can be expressed as follows: 

 

ὒ ὃ
ϳ

ᾀ                                                                               (44) 
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where N is the number of stress cycles per inner-race revolution and A is a material 

life factor based upon air-melt, pre-1940 AISI 52100 steel
3
 and mineral oil 

lubricant. 

 

 
 

Figure 6. Deep-groove ball bearing. (a) Schematic. (b) Cross section without cage. 

                                                   
3 Numbered AISI steel grades are standardized by the American Iron and Steel Institute (AISI). 
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Figure 7. Ball-race conformity. (a) Deep-groove ball bearing. (b) Angular-contact ball 

bearing. 

 

 
 

Figure 8. Schematic of cylindrical roller bearing with inner raceway. Bearing 

accommodates axial movement by not restraining rollers axially on inner raceway. 

Similar bearing with flanged inner ring allows axial roller movement on outer raceway. 
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In general, for ball and roller bearings, the running track lengths for Eqs. (25a) 

and (25b) for the inner and outer raceways are, respectively, 

 

( )b-p=p= cosddDl eiirL                                                                               (45a) 

 

and 

 

( )b+p=p= cosddkDl eoorL                                                                            (45b) 

 

where de is the bearing pitch diameter (see Fig. 6). 

In Eq. (45b), k is a correction factor that can account for variation of the 

stressed volume in the outer raceway. Equations (45a) and (45b) without the 

correction factor k are used in the Lundberg-Palmgren theory [9] to develop the 

capacity of a single contact on a raceway, assuming that all the ball-raceway loads 

are the same. In Eq. (45b), for an angular-contact bearing under thrust load only, 

k = 1. 

Under radial load and no misalignment, the stressed volume V of a stationary 

outer race in a roller bearing or deep-groove ball bearing varies along the outer 

raceway in a load zone equal to or less than 180.̄ In the ANSI/ABMA and ISO 

standards [12,14] for radially loaded, rolling-element bearings, Eqs. (45a) and 

(45b) are adjusted for inner-race rotation and a fixed outer race with zero internal 

clearance, using system-life equations for multiple single contacts to calculate the 

bearing fatigue life. The outer raceway has a maximum load zone of 180.̄ An 

equivalent radial load Peq was developed by Lundberg and Palmgren [9] and is 

used in the standards [12,14]. The equivalent load Peq mimics a 180̄ ball-race load 

distribution assumed in the standards when pure axial loads are applied. It is also 

used throughout the referenced standards when combined axial and radial loads are 

applied in an angular-contact ball bearing. 

Equations (45a) and (45b) are applicable for radially loaded roller bearing and 

deep-groove ball bearings where the rolling element-raceway contact diameters are 

at the pitch diameter plus or minus the roller/ball diameter, cos ɓ = 1, and k < 1. 

The maximum Hertz stress values are different at each ball or roller-race contact, at 

the inner and outer races, and vary along the arc in the zone of contact in a 

predictable manner. The width of the contact 2a for a ball bearing (Fig. 3) and the 

depth z for both ball and roller bearings (Fig. 5) to the critical shearing stress t are 

functions of the maximum Hertz stress and are different at the inner and outer race 

contacts. 
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From Jones [29], for a ball bearing with a rotating inner race and a stationary 

outer race, the number of stress cycles Nir and Nor for a single inner-race rotation 

for single points on the inner- and outer-races, respectively, are 
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From Eqs. (12) and (17) from Weibull [6,7], Lundberg and Palmgren [9] first 

derived the relationship between individual component life and system life. A 

bearing is a system of multiple components, each with a different life. As a result, 

the life of the system is different from the life of an individual component in the 

system. The L10 bearing system life, where 90 percent of the population survives, 

can be expressed as 
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where the life of the rolling elements, by inference, is incorporated into the life of 

each raceway tacitly assuming that all components have the same Weibull slope e 

where the L10 life of the bearing will be less than the L10 life of the lowest lived 

component in the bearing, which is usually that of the inner race. This is referred to 

as a ñstrict series reliabilityò equation and is derived in Appendix B. In properly 

designed and operated rolling-element bearings, fatigue of the cage or separator 

should not occur and, therefore, is not considered in determining bearing life and 

reliability. From Eqs. (17) and (44), Lundberg and Palmgren [9] derived the 

following relation: 

 
p

eq

D

P

C
L

ö
ö

÷

õ

æ
æ

ç

å
=10                                                                                                      (48) 

 

Equation (48) is identical to Eq. (8) proposed by Palmgren [4] in 1924 if p 

equal 3. From Lundberg-Palmgren [9], the load-life exponent p equals 3 for ball 
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bearings and 4 for roller bearings. However, as previously discussed, Lundberg and 

Palmgren in 1952 [10] proposed p = 10/3 for roller bearings. 

 

Dynamic load capacity, CD 

 

Palmgren [4] proposed the concept of a dynamic load rating or capacity for a 

rolling-element bearing, defined as the load placed on a bearing that will 

theoretically result in a L10 life of 1 million inner-race revolutions. He first 

characterized this concept as that shown in Eq. (6) that subsequently evolved as 

Eqs. (9) and (10).  

From Anderson [21], according to the Hertz theory, the dynamic load capacity 

should be proportional to the square of the rolling-element diameter. From 

experimental data, Palmgren [30] found that capacity varied as d
1.8

 for balls up to 

about 25 mm in diameter and d
1.4

 for balls larger than 25 mm in diameter. 

From Eq. (11), the dynamic load capacity varies with the number of rolling 

elements Z to the 2/3 power (Z
2/3

). However, this would only be correct for an 

inverse cubic relation between load and life.  

From Anderson [21], multiple-row bearings with i rows of balls may be 

considered as a combination of i single-row bearings [21]. From strict series 

reliability (Appendix B) the following relation between the life of a multirow 

bearing and the lives of the i individual rows is obtained assuming that all rows 

carry equal load: 
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Then 

 

e
i

e L
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L
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If each row of the bearing is loaded with a load equal to the dynamic load 

capacity of one row Ci, then Li = 1 (i.e., one million inner-race revolutions) and 

from Eq. (49b), 

 

i
Le 1
=                                                                                                                  (50a) 
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or 

 

ei1

1
=L                                                                                                               (50b) 

 

The load Peq on the entire bearing is iCi, where Peq is the equivalent bearing load. 

In this case,  

 

ieq iCP =                                                                                                               (51) 

 

From Eqs. (50b) and (51), 
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or 

 

( )ep
iD iCC 11-=                                                                                                (52b) 

 

For ball bearings, p = 3 and e is approximately 1.1, so that the capacity of multirow 

bearings varies as i
0.7

. For radial ball bearings, the normal force between a ball and 

a race varies as 1/cos ɓ, so that the capacity is proportional to cos ɓ, where ɓ is the 

contact angle (see Fig. 7). The influence of the ball-race conformity, bearing type, 

and internal dimensions expressed by fcm/(cos ɓ)
0.3

, where fcm is the material and 

geometry coefficient. Therefore the capacity of a radial ball bearing varies as 

(icos ɓ)
0.7

. 

For thrust ball bearings, the normal force between a ball and a race varies as 

1/sin ɓ, so that the capacity is proportional to sin ɓ or to (cos ɓ)(tan ɓ). When the 

influences of the degree of conformity, of bearing type, and of internal dimensions 

are included, the capacity of a thrust ball bearing varies as (icos ɓ)
 0.7

(tan ɓ).  

For roller bearings with line contact, the load-life exponent in the life equation 

is 4, so that the capacity varies as Z
3/4

. From Eq. (52b) with p = 4, the capacity of a 

multirow-roller bearing is found to vary as i
0.78

. Theoretically, the capacity of roller 

bearings should be proportional to ltd. Experimental data [9] indicate that capacity 

varies as 07.178.0 dl t . 

Formulas for the dynamic load capacity CD as developed by Palmgren [30] and 

Lundberg and Palmgren [9, 10] are dependent on 
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(1) Size of rolling elements, d (ball or roller diameter) and lt (ball or roller  

length) 

(2) Size of rolling elements, d (ball or roller diameter) and lt (ball or roller 

length) 

(3) Number of rolling elements per row, Z 

(4) Number of rows of rolling elements, i 

(5) Contact angle, b (see Fig. 7) 

(6) Material and geometry coefficient, fcm 

 

They are incorporated into the ANSI/ABMA and ISO standards [12 to 14], are 

semiempirical, and are as follows: 

 

For radial ball bearings with d ¢ 25 mm, 

 

( ) 8.17.0 3
2

cos dZifC cmD b=                                                                             (53a) 

 

For radial ball bearings with d > 25 mm, 

 

( ) 4.17.0 3
2

cos dZifC cmD b=                                                                            (53b) 

 

For radial roller bearings, 

 

( ) 27
29

4
3

9
7

cos dZlifC tcmD b=                                                                         (53c) 

 

For thrust ball bearings with b  ̧90°, 

 

( ) ( ) 8.13/27.0
tancos dZifC cmD bb=                                                               (53d) 

 

For thrust roller bearings with b  ̧90°, 

 

( ) ( ) 27/294/39/7
tancos dZlifC tcmD bb=    (53e) 

 

For thrust ball bearings with b = 90°, 

 

8.13/27.0 dZifC cmD =                                                                                       (53f) 
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For thrust roller bearings with b = 90°, 

 

( ) 27/294/39/7
dZlifC tcmD =                                                                          (53g) 

 

The material and geometry coefficient fcm (originally designated fc by Lundberg 

and Palmgren [9]) in turn depends on the bearing type, material, and processing 

and the conformity between the rolling elements and the races. Representative 

values of fcm are given in Table 1 from the ANSI/ABMA standards [13,14]. It 

should be noted that the coefficient fcm and the various exponents of Eqs. (53a) 

through (53g) were chosen by Lundberg and Palmgren [9] and Palmgren [30] to 

match their bearing data base at the time of their writing. However, the values of 

fcm have been updated periodically in the ANSI/ABMA and ISO standards [18,31]. 

 
Table 1. Representative values of rolling-element bearing geometry and material 

coefficient fcm in ANSI/ABMA Standards 9 and 11 ([13], [14]) for representative rolling-

element bearing sizes [18]. 
 
 

Bearing 

envelope size,
 

d cos b 
de 

Bearing geometry and material coefficient,
a
 fcm

b
 

Deep-groove and angular-contact ball bearings
c
 Cylindrical (radial) roller bearing 

0.05 6070 (4610) 81.51 (7329) 

.10 72.16 (5480) 92.62 (8322) 

.16 77.56 (5890) 97.35 (8747) 

.22 77.56 (5890) 97.02 (8767) 

.28 74.27 (5640) 93.02 (8767) 

.34 69.26 (5260) ------- 

.40 62.94 (4780) ------- 
aValues of fcm are for use with newtons and millimeters; those in parentheses are for use with pounds and inches. 
bPrior to 1990, fcm was designated as fc. 
cInner- and outer-race conformities are equal to 0.52. 

 

Substituting the bearing geometry and the Hertzian contact stresses for a given 

normal load PN into Eqs. (44) through (47), the dynamic load capacity CD can be 

calculated from Eq. (48). Since PN is the normal load on the maximum-loaded 

rolling element, it is required that the equivalent load Peq be calculated. Once CD is 

determined, fcm can be calculated for the appropriate bearing type from Eq. (53). 

The equivalent load Peq can be obtained from Eq. (3) where values of X and Y 

for different bearing types are given in the ANSI/ABMA standards [13,14]. The 

dynamic load capacity CD in the standards should be Cr (Eqs. (53a) to (53c)) for a 

radial bearing or Ca (Eqs. (53d) to (53g)) for a thrust bearing. 
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Lives determined using Eq. (53) are based on the ñfirst evidence of fatigue.ò 

This can be a small spall or surface pit that may not significantly impair the 

function of the bearing. The actual useful bearing life can be much longer. It 

should be also noted that in these Eqs. (53) where derived exponents differed from 

those obtained experimentally, those exponents obtained experimentally were 

substituted by Lundberg and Palmgren [9,10] for those that they analytically 

derived. 

 

Ioannides-Harris model 
 

Ioannides and Harris [32], using Weibull [6,7] and Lundberg and Palmgren 

[9,10] introduced a fatigue-limiting shear stress tu where from Eq. (37), 
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The equation is identical to that of Lundberg and Palmgren (Eq. 37) except for 

the introduction of a fatigue-limiting stress where 
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Equation (55) can be expressed as a function of Smax where 
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     Ioannides and Harris [32] use the same values of Lundberg and Palmgren for e, 

c, and h. If tu equals 0, then the values of the Hertz stress-life exponent n are 

identical to those of Lundberg and Palmgren (Eqs. (41b) and (43b)). However, for 

values of tu > 0, n is also a function of (t ï tu). For their critical shearing stress, 

Ioannides and Harris chose the von Mises stress. 

From the above, Eq. (48) can be rewritten to include a ñfatigue-limitingò load 

Pu: 
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where 

 

( )uu fP t=                                                                                                         (57b) 

 

When Peq ¢ Pu, bearing life is infinite and no failure would be expected. When Pu = 

0, the life is the same as that for Lundberg and Palmgren. 

The concept of a fatigue limit for rolling-element bearings was first proposed 

by Palmgren in 1924 (Eq. (5)) [4]. It was apparently abandoned by him first in 

1945 [5] and then again with Lundberg in 1947 [9]. In 1985, Ioannides and Harris 

[32] applied Palmgrenôs concept of a fatigue limit to the Lundberg-Palmgren 

equations in the form shown in Eq. (54). The ostensible reason Ioannides and 

Harris used the fatigue limit was to replace the material and processing life factors 

[18] that are used as life modifiers in conjunction with the bearing lives calculated 

from the Lundberg-Palmgren equations. 

There are two problems associated with the use of a fatigue limit for rolling-

element bearing. The first problem is that the form of Eq. (55) may not reflect the 

presence of a fatigue limit but the presence of a compressive residual stress [18]. 

The second problem is that there are no data in the open literature that would 

justify the use of a fatigue limit for through-hardened bearing steels such as AISI 

52100 and AISI Mï50. In fact, a paper presented by Tosha et al. [33], reporting the 

results of rotating beam fatigue experiments for through-hardened AISI 52100 steel 

at very low stress levels, shows conclusively that a fatigue limit does not exist for 

this bearing steel. 

Recent publications by the ASME [34] and the ISO [35,36] for calculating the 

life of rolling-element bearings include a fatigue limit and the effects of ball-race 

conformity on bearing fatigue life. These methods do not, however, include the 

effect of ball failure on bearing life. The ISO method is based on the work reported 

by Ioannides, Bergling, and Gabelli [37]. The ASME method as contained in their 

ASMELIFE software [34] uses the von Mises stress as the critical shearing stress 

with a fatigue limit value of 684 MPa (99,180 psi). This corresponds to a Hertz 

surface contact stress of 1140 MPa (165,300 psi). The ISO 281:2007 [36] method 

uses a fatigue limit stress of 900 MPa (130,500 psi), which corresponds to a Hertz 

contact stress of 1500 MPa (217,500 psi) [31]. 

The concepts of a fatigue limit load (bearing load under which the fatigue stress 

limit is just reached in the most heavily loaded raceway contact) introduced in the 



Rolling bearing life prediction, theory, and application 

   77 

new ISO rating methods [36] is proportional to the fatigue limit load raised to the 

3rd power for ball bearings (point contact). These differing values of load would 

result in a 128-percent higher load below which no fatigue failure would be 

expected to occur [31] using ISO 281:2007 [36] than ASMELIFE [34]. 

The effect of using different values of fatigue limit or no fatigue limit on 

rolling-element fatigue life prediction is shown in Table 2. This table summarizes 

the qualitative results obtained for maximum Hertz stresses of 1379, 1724, and 

2068 MPa (200, 250, and 300 ksi) for point contact using Eq. (38) for Lundberg-

Palmgren without a fatigue limit and Eq. (55) for fatigue limits of 684 MPa 

(99,180 psi) (from ASMELIFE) and 900 MPa (130,500 psi) (from ISO 281:2007). 

The results are normalized to a maximum Hertz stress of 1379 MPa (200 ksi) with 

no fatigue limit where the quotient of Eq. (55) divided by Eq. (38) is taken to the 

c/e power of 9.3 (taken from Lundberg and Palmgren). The effect of stressed 

volume was also factored into these calculations [31]: 
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where LIH is the life with the fatigue limit tu, L is the life without a fatigue limit tu 

and t is the critical shearing stress. 

 
Table 2. Effect of fatigue limit  Ű on rolling-element fatigue life [31]. 

 

Fatigue limit,
a
 tu, MPa (ksi) 

Relative life
b,c

 (Eq. (58)) 

Maximum Hertz stress, MPa (ksi) 

1379 (200) 1724 (250) 2068 (300) 

0 (0), Lundberg-Palmgren [9] 1 0.134 0.026 

684 (99.2), ASMELIFE [34] 11.9³10
6
 3152 44.6 

900 (130.5), ISO 281: 2007 

[36] 

Ð 23.3³10
6
 4258 

a 
The

 
von Mises stress. 

b 
Includes effect of stressed volume. 

c 
Normalized to life at maximum Hertz stress of 1379 MPa (200 ksi) with no fatigue limit.  

 

Zaretsky model 
 

Both the Weibull and Lundberg-Palmgren models relate the critical shear 

stress-life exponent c to the Weibull slope e. The parameter c/e thus becomes, in 
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essence, the effective critical shear stress-life exponent, implying that the critical 

shear stress-life exponent depends on bearing life scatter or dispersion of the data. 

A search of the literature for a wide variety of materials and for nonrolling-element 

fatigue reveals that most stress-life exponents vary from 6 to 12. The exponent 

appears to be independent of scatter or dispersion in the data. Hence, Zaretsky [38] 

has rewritten the Weibull equation to reflect that observation by making the 

exponent c independent of the Weibull slope e, where 

 

() eceXf ht=                                                                                                        (59) 

 

From Eqs. (5) and (59), 
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For critical shearing stress t, Zaretsky chose the maximum shearing stress, t45. 

 Lundberg and Palmgren [9] assumed that once initiated, the time a crack takes 

to propagate to the surface and form a fatigue spall is a function of the depth to the 

critical shear stress z. Hence, by implication, bearing fatigue life is crack 

propagation time dependent. However, rolling-element fatigue life can be 

categorized as ñhigh-cycle fatigue.ò Crack propagation time is an extremely small 

fraction of the total life or running time of the bearing. The Lundberg-Palmgren 

relation implies that the opposite is true. To decouple the dependence of bearing 

life on crack propagation rate, Zaretsky [38,39] dispensed with the Lundberg-

Palmgren relation of L ~ z
h/e

 in Eq. (60). (It should be noted that at the time (1947) 

Lundberg and Palmgren published their theory [9], the concepts of ñhigh-cycleò 

and ñlow-cycleò fatigue were only then beginning to be formulated.) 

Equation (60) can be written as 
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From [28], solving for the value of the Hertz stress-life exponent n, for point 

contact from Eq. (61) gives 
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and for line contact, 

 

e
cn

1
+=                                                                                                              (62b) 

 

If it is assumed that c = 9 and e = 1.11, n = 10.8 for point contact and n = 9.9 for 

line contact. If it is further assumed that c = 10 and e = 1.0, n = 12 for point contact 

and n = 11 for line contact. 

What differentiates Eq. (61) and those of Weibull (Eq. 24), Lundberg and 

Palmgren (Eq. (38)) and Ioannides and Harris (Eq. (56)) is that the relation 

between shearing stress and life is independent of the Weibull slope, e, or the 

distribution of the failure data. However, in all four models, there is a dependency 

of the Hertz stress-life exponent, n, on the Weibull slope. The magnitude of the 

variation is least with the Zaretsky model. 

Although Zaretsky [38,39] does not propose a fatigue-limiting stress, he does 

not exclude that concept either. However, his approach is entirely different from 

that of Ioannides and Harris [32]. For critical stresses less than the fatigue-limiting 

stress, the life for the elemental stressed volume is assumed to be infinite. Thus, the 

stressed volume of the component would be affected where L ~ 1/V
l/e

. As an 

example, a reduction in stressed volume of 50 percent results in an increase in life 

by a factor of 1.9. 

 

Ball and roller set life 

 

Lundberg and Palmgren [9] do not directly calculate the life of the rolling-

element (ball or roller) set of the bearing. However, through benchmarking of the 

equations with bearing life data by use of a material-geometry factor fcm, the life of 

the rolling-element set is implicitly included in the life calculation of Eqs. (53a) to 

(53g). 

The rationale for not including the rolling-element set in Eq. (47) appears in the 

1945 edition of A. Palmgrenôs book [5] wherein he states that, ñéthe fatigue 

phenomenon which determines the life (of the bearing) usually develops on the 

raceway of one ring or the other. Thus, the rolling elements are not the weakest 

parts of the bearing éò. The database that Palmgren used to benchmark his and 

later the Lundberg-Palmgren equations were obtained under radially loaded 

conditions. Under these conditions, the life of the rolling elements as a system (set) 

will be equal to or greater than that of the outer race. As a result, failure of the 

rolling elements in determining bearing life was not initially considered by 

Palmgren. Had it been, Eq. (47) would have been written as follows: 




