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Abstract. A tutorial is presented outlining the evolution, theory, and application of relling
element bearing life prediction from that of A. Palmgren, 1924, W. Weibull, 1939, G.
Lundberg and A. Palmgren, 1947 and 1952, E. loannides and T. Harris, 1985, and E.
Zaresky, 1987. Comparisons are made between these life models. The lodthaides
model without a fatigue limit is identical to the Lundbé&tgimgren model. The Weibull
model is similar to that of Zaretsky if the exponents are chosen to be identical. 8tihdh

life and Hertz streskfe relations of Weibull, Lundberg and Palmgren, and loannides and
Harris reflect a strong dependence on the Weibull slope. The Zaretsky model decouples the
dependence of the critical shear stiggsrelation from the Weibulslope. This results in a
nominal variation of the Hertz strek& exponent.

For 9th and 8thpower Hertz streskfe exponents for ball and roller bearings,
respectively, the Lundbefi§almgren model best predicts life. However, for 12ihd 10tk
power relations reflected by modern bearing steels, the Zaretsky model based abihié W
equation is superior. Under the range of stresses examined, the use of a fatigue limit would
suggest that (for most operating conditions under which a redliegnent bearing will
operate) the bearing will not fail from classical roliament fague. Realistically, this is
not the case. The use of a fatigue limit will significantly overpredict life over a range of
normal operating Hertz stresses. (The use of ISO 281:2007 with a fatigue limit in these
calculations would result in a bearing lifepapaching infinity.) Since the predicted lives of
rolling-element bearings are high, the problem can become one of undersizing a bearing for a
particular application.

Rules had been developed to distinguish and compare predicted lives to those actually
obtained. Based upon field and test results of 51 ball and roller bearing sets, 98 percent of
these bearing sets had acceptable life results using the Lurfelengren equations with
life adjustment factors to predict bearing life. That is, they had livealéq or greater than
that predicted.

The LundbergPalmgren model was used to predict the life of a commercial turboprop
gearbox. The life prediction was compared with the field lives of 64 gearboxes. From these
results, the roller bearing lives exhibitadoadlife exponent of 5.2, which correlated with
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the Zaretsky model. The use of the ANSI/ABMA and ISO standardslifeaedxponent of
10/3 to predict roller bearing life is not reflective of modern roller bearings and will
underpredict bearing lives.

Introduction

By the close of the 19ttentury, therolling-elementbearing industry began to
focus on sizing oball and rollerbearings for specific applications and determining
bearing life and reliability. In 1896, R. Stribe¢k] in Germany began fatigue
testing fullscalerolling-elementbearings. J. Goodmd@g] in 1912 in Great Britain
published formulae based on fatigue data that would compute safe loads on ball
and cylindrical roller bearings. In 1914, th&merican Machinistéda n d b [8]p k 0
devoted 6 pages to rollinglement bearings that discussed bearing sizes and
dimensions recommended (maximum) loadingnd specified geeds. However,
the publicationdid not address the issue of bearing life. During this time, it would
appear that rollingelement bearing fatigue testing was the only way to determine
or predict the minimum or average life of ball and roller bearings.

In 1924, A. Palmgreid] in Sweden published a paper in German outlining his
approach to bearing life predimh and an empirical formula based upon the
concept of arlLyg life, or the time thaB0 percent of a bearing population would
equal or exceed without rollinglement fatigue failure. During the next 20 years
he empirically refined his approach to beariifg prediction and matclke his
predictions to test dat&] However, his formula lacked a theoretical basis or an
analytical proof.

In 1939, W.Weibull [6,7] in Sweden published his theory of failure. Weibull
was a contemporary of Palmgren and shared the results of his work with him. In
1947, Palmgren in concert witd. Lundberg, also of Sweden, incorporated his
previous work along with that of Weibull and whagppears to be the work éf.
Thomas andV. Hoersch[8] into a probabilistic analysis to calculate rolkng
element (ball and roller) life. This has become known as the Lundtsmgren
theory[9,10]. (In 1930, H. Thomas and V. Hoerg@j at the Universy of lllinois,
Urbana, developed an analysis for determining subsurface principal stresses under
Hertzian contacfll]. Lundberg and Palmgrdf,10] do not reference the work of
Thomas and HoersdRB] in their papers.)

The LundbergPalmgren life equatia have been incorporated into both the
International Organization for Standardization (ISO) and the American National
Standards Institute (ANSI)/American Bearing ManufaataireAssociation
(ABMA) ! standards for the load rags and life of rollingelement[12 to 14] as
well as in current bearing codes to predict life.

'ABMA changed their name from the Asfiriction Bearing Manufacturers Association (AFBMA) in 1993,
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Rolling bearing life prediction, theory, and application

In the post World War Il era the major technology drivers for improving the
life, reliability, and performance of rollinglement bearings have been the jet
engine and the helicopter. By thedd 950s most of the materials used for bearings
in the aerospace industry were introduced into use. By the early 1960s the life of
most steels was increased over that experienced in the early 1940s primarily by the
introduction of vacuum degassing and wai meltng processes in the late 1950s
[15].

The development of elastohydrodynamic (EHD) lubrication theory in 1939 by
A. Ertel[16] and later A. Grubinfl7] in 1949 in Russia showed that most rolling
bearings and gears have a thin EHD film separating the contacting components.
The life of these bearing and gears is a function of the thickness of the EHD film
[15].

Computer programs modeling bearing dynamiwas tincorporate probabilistic
life prediction methods and EHD theory enable optimization of rokilegnent
bearings based on life and reliability. With improved manufacturing and material
processing, the potential improvement in bearing life can be ak agi80 times
that attainable in the late 19508 as much as 400 timesathattainable in 1940
[15].

While there can be multifailure modes of rollietement bearings, the failure
mode limiting bearing life is contact (rollirgiement) surface fatigue @hne or
more of the running tracks of the bearing components. Redliagent fatigue is
extremely variable but is statistically predibte depending on the material (steel)
type, the processing, the manufacturiagd operating conditions [18]

Rolling-element fatigue life analysis is based on the initiation or first evidence
of fatigue spalling on a loaded, contacting surface of a bearing. This spalling
phenomenon is load cycle dependent. Generally, the spall begins in the region of
maximum shear stressdecated below the contact surface, and propagates into a
crack network. Failures other than that caused by classical reliamgent fatigue
are considered avoidable if the component is designed, haratiednstalled
properly and is not overloaded18]. However, under low EHD lubricant film
conditions, rollingelement fatigue can be surface or reanface initiated with the
spall propagating into the region of maximum shearing stresses.

The datdbase for ball and roller bearings is extensive. A contlean arises
from these data and tin@nalysis is the variation between life calculations and the
actual endurance characteristics of these components. Experience has shown that
endurance tests of groups of identical bearings under identical conditions can
produce a variation iy, life from group to grouplf a number of apparently
identical bearings are tested to fatigue at a specific load, there is a wide dispersion
of life among these bearings. For a group of 30 or more bearings, the ratio of the
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longest to the hortest life may be 20 or mofd8]. This variation can exceed
reasonable engineering expectations.

Bearing life theory

Foundation for bearing life prediction
Hertz contact stress heory

In 1917, Arvid Palmgren began his career at #éB. Svenska Kullager
Fabriken(SKF) bearingcompanyin Swedenln 1924 he published his paper [4]
that laid the foundation for what later was to become knosvitha Lundberg
Palmgren theory [9]Because the 1924 paper was missing two elements, it did not
allow for a comprehensive rollinglement bearing life theory. The first missing
element was the ability to calculate the subsurface principal strasdbence, the
shear stresses below the Hertzian contact of either a ball on a nonconforming race
or a cylindical roller on a race. The second missing element was a comprehensive
life theory that would fit the observations of Palmgren. Palmdistounted Hertz
contact stress theory [1ahd depended on the loétk relation for ball and roller
bearings basednotesting atSFK Sweden that began in 1910 [1%aretsky
discuses the 1924 Palmgren work|[i2aQ].

Palmgren did not have confidence in the ability of the Hertzian equations to
accurately predict ralg bearing stresses. Palmgren$4t at e s , fiofdfe c al
def ormation and stresses upon contact b
number of simplifying stipulations which will not yield very accurate
approximation values, for instanoghen calculating the deformations. Moreover,
recent investigadns (circa 19191923) made at AB. Svenska KullageFabriken
(SKF) have proved through calculation and experiment that the Hertzian formulae
will not yield a generally applicable procedure for calculating the material
stresses. éAs a ntengporthrce obthis problem tgpbalr baamay u
technology, comprehensive-house studies were performed at SKF in order to
find the law that describes the change in service life that is caused by changing
load, rpm, bearing dimensions, and the like. These only one possible approach:
tests performed on complete ball bearings. It is not acceptable to perform
theoretical calculations only, since the actual stresses that are encountered in a ball
bearing cannot be determined by mat he ma

Palmgrenlater recanted his doubts about the validify Hertz theory and
incorporatecthe Hertz contact streggjuation in his 1945 book [5]. In their 1947
paper [9] Lundberg and Pal mgr en stat e, A H
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assumptions that the contact arsasmall compared to the dimensions of the
bodies and that the frictional forces in the contact areas can be neglected. For ball
bearings, with close conformity between rolling elements and raceways, these
conditions are only approximately true. For lirentact the limit of validity of the
theory Is exceeded whenever edge pressu
Lundberg and Palmgren exhibited a great deal of insight as to the other
variables modifying the resultant shear stresses calcutatedHertz theory. They
state [9] ai dhe yet knows much about how the material reacts to the
complicated and varying succession of (shear) stresses which then occur, nor is
much known concerning the effect of residual hardening stresses or how the
lubricant affects the stress distributioritlvin the pressure area. Hertz theory also
does not treat the influence of those static stresses which are set up by the
expansion or compression of the rings
These effects are now understp@ohd life factors are ctently being used to
account for them so as to more accurately predict bearing lifecsfiadility [18].

Equivalent Load

Palmgren [4]recognized that it was necessary to account for combined and
variable loading around the circumference of a ball bearing. He proposed a

procedure in 1924 Ato establish funct.i
purely radial load and to establishlas for the conversion of axial and
Ssimultaneous effective axial and radial

used Str i bdlttk akulate guabdan best be described as a stress on
the maximum radid} loaded balrace contact in a babearing. The equation
attributed to Stribeck by Palmgren is as follows:

Zd?
where Q is the total radial load on the bearirgy,is the number of balls in the
bearingdis the ball diameter,aridi s St ri beckds constant.
Pal mgren modi fied Stribeckobés equation
as well as modifying the ball diametedation. For brevity, this modificatiois not
presentedlt is not clear whether Palmgrene cogni zed at that ti
equation was valid only fax diametral clearancgreater than zerwith fewer than
half of the balls being loaded. Howevdre stated that the corrected constant
yielded good agreement with tests performed.
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Palmgrenf§] st at e s, Al ot I's probably i mpossi.l
same time, simple expression for the ball pressure as a function of radial and axial
pressureéo According to Pal mgren, AAde:«

by using the following eggation:
Q=R+yA 2)

whereQ is the imagined, purely radial load that will yield the same service life as
the simultaneously actingdial and axial forces} is the actual radial load, amd
I s t he act uarlball hearings| Palmgrem gpresented valueyg a a
function of S k. rPalrhgeen ktatedhat dhese svdluast ¥ were
confirmed by test resul{d].

By 1945, Palmgren [5inodified Eq. (2) as follows:

Q = Peq = XFr +YFa (3)

where

Peg  the equivalent load

F, the radial component of the actual load
Fa.  theaxial component of the actual load
X a rotation factor

Y the thrust factor of the bearing

The rotationfactor X is an expression for the effect on the bearing capacity of
the conditions of rotation. The thrust factrs a cowersion value fothrust loads

[5].
Fatigue Limit

Palmgren 4] st at es t hat bearing Ali mited se
phenomenon. However, under exceptional high loads there will be additional
factors such as permanent defor mations,
out from the assumption thatetimaterial has a certain fatigue limit, meaning that it
can withstand an unlimited number of cyclic loads on or below a certain, low level
of load, the service life curve will be asymptotic. Since, moreover, the material has
an elastic limit and/or fractarlimit, the curve must yield a finite load even when
there is only a single load value, meaning that the number of cycles equals zero. If
we further assume that the curve has a profile of an exponential function, the
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general equation for the relationshepisting between load and number of load
cycles prior to fatigue would read:

k=Clan+e) X +u (4)

whereki s t he speci fic | dCasdhe materidh constamhesc k 6 s
the number of load cycles during one revolution at the point with the maximum
load exposuren is the number of revolutions in millions,is the material constant
that is dependent on the value of the elasticity or fradiom¢, u is the fatigue
limit,andxi s an exponent. O

According to Pal mxgsraleays locéited lcloss to &/ q 0.3 e n t
Its value will approach 1/3 when the fatigue limit is so high that it cannot be
di sregar ded, and O .Palmgreh eeported test resuttsav e r y
support a value of = 1/3. Hence, Eq. j4can be written as

Life (millions of stresscycles):%(c—g - e (5)
gr- U=

The valuee suggests a finite time below which no failure would be expected to
occur. By letting e = 0 and eliminating the concept of a fatigue limit for bearing
steels, Eq.J) can be rewritten as

2 ~3
ac 2/5Q
L(million of racerevolutions): Zd / 59 (6)

Q

O
10

In Eq. (6), ly letting f. = C/5, and Peq = Q, the 1924 version of the dynamic load
capacityCp, for a radial ball bearing would be

Cp = fozd? @)

and Eq. 6) becomes

g

1-O: OO}J0

D
eq

LlO = (8)

g
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wherel g is the life in millions of innefrace revolutios, at which 10 percent of a
bearing population will have failed and 90 percent Wwal/esurvived. This is also
referred to as Hpercentife or Lyg life.

By 1945, Palmgren [SEmpiricaly modifiedthe dynamic load capacityy for
ball and roller bearings as follows:
For ball bearings

o o id22% cos
D~ ¢ 141002 9)

For roller bearings

2
Cp = f.id2,2% cos (10)
where
fe materialgeometry coefficiert

number of rows of rolling elements (balls or rollers)
ball or roller diameter

t roller length

Z number of rolling elements (balls or rollers) in a row
b bearing contact angle

—a —

From Anderson [21]for a constant bearing load, the normal force between a
rolling element and a race will be inversely proportional to the number of rolling
elements. Therefore, for a constant number of stress cycles at a point, the capacity
is proportional to the number oblting elementsAlternately, the number of stress
cycles per revolution is also proportional to the number of rolling elements, so that
for a constant rollingglement load the capacity for point contact is inversely
proportional to the cube root of the number of rolling elements. This comes from
the inverse cubic relation between load and life for point contact. Then the
dynamic load capdty varieswith number of balls as

Z _5%
Cp~—+=2"3
D Z% (11)

2 post 1990, the coefficiefitis designated &s,,in the ANSI/ABMA/ISO standards [12 to 14].
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Equation(11) is reflected in the dynamic load capacity of Egs. (9) and (10).
According to Pahgren [5] the coefficient; (in Egs. (9) and (10)) is dependent,
among other things, on the properties of the material, the degree of osculation

(bearing racéall conformity), and the reduction in capacity on account of uneven
load distribution within multiple row bearings and hags with long rollers. The
magnitude of this coefficient can be determined only by numerous laboratory tests.
It has one definite value for all sizes of a given bearing type.

In all of the above equations, the units of the input variables and the n¢sulta
units used by Palmgrerave been omittedecause they cannot be reasonably used
or compared with engineering ptace today. As a result, thesgquatiors should be
considered only for their conceptual content and not for any quantitative
calculations.

Lo life

The Ly life, or the time that 9(ercentof a group of bearings will exceed
without failing by rollingelement fatigue, is the basis for calculating bearing life
and reliability today. Accepting this criterion means that the bearing user is willing
in principle to accept that 1®ercentof a beaing group will fail before this time.

In Eg. (§ the life calculated is thiey life.

The rationale for using theg life was first laid dowrby Palmgren in 1924. He
stateq4], AThe ( mat@(Eqg @) has beeo determimad bn the basis of
a \ery great number of tests run under different types of loads. However, certain
difficulties are involved in the determination of this constant as a result of service
life demonstrated by the different configurations of the same bearing type under
equal tes conditions. Therefore, it is necessary to state whether an expression is
desired for the minimum, (for the) maximum, or for an intermediate service life
bet ween these two extremes. éln order toa
necessary to acpethat a certain small number of bearings will have a shorter
service life than the calculated lifetime, and therefore the antstmust be
calculated so tha@0 percentof all the bearings have a service life longer than that
stated in the formula. Thealculation procedure must be considered entirely
satisfactory from both an engineering and a business point of view, if we are to
keep in mind that the mean service life is much longer than the calculated service
life and that those bearings that haveéharter life actually only require repairs by
replacement of the part which I s damage

Palmgren is perhaps the first person to advocate a probabilistic approach to
engineering design and reliability. Certainly, at that time, engineering practice
dictated a deterministic approach to component design. This approach by Palmgren
was decades ahead of its time. What he advocated is designing for finite life and
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reliability at an acceptable risk. This concejas incorporated in the ANSI/ABMA
and ISOstandads [12 to 14.

Linear damagerule

Most bearings are operated under combinations of variable loading and speed.
Palmgren recognized that the variation in both load and speed must be accounted
for in order to predict bearing |ife.
for a calculaibn, the assumption might be conceivable that (for) a bearing which
has a life ofn million revolutions under constant load at a certain rpm (speed), a
portion M/n of its durability will have been consumed. If the bearing is exposed to
a certain load for aun of M; million revolutions where it has a life of million
revolutions, and to a different load for a runMyf million revolutions where it will
reach a life oh, million revolutions, and so on, we will obtain

— — — E op (12)

In the event of a cyclic variable load we obtain a convenient formula by
introducing the number of intervals and designaten as the revolutions in
millions that are covered within a single interval. In that case we have

pgﬂh-+m2+nb+2
Sy o ng

-1 (13)

|- OO

wheren still designates the total life in millions of revolutions under the load and
rpm (speed)n questionandM in Eq. (12) equagbhm 0

Equatiors (12) and (13 wereindependently proposed for conventional fatigue
analysis byB. Langer [22]in 1937 and MMiner [23] in 1945,13 and 21 years
after Palmgrenrespectively The equation has been subsequently referred to as the
linear damage rule or the PalmgiemngerMiner rule. For convenience, the
equation can be written as follows:

X1 + X2 + X3 +2 ﬁ (14)
L, Ly Ls Ly

1_
L
and

54



Rolling bearing life prediction, theory, and application

X+ Xo+Xg+2 X, =1 (15)

whereL is the total life in stress cycles or race revolutidns, L, is the life at a
particular load and speed in stress cycles or race revolutionX@&n, is the
fraction of total running time at load and spe€&lde values oM, M, etc. in Eq.
(12) equalXiL, X;L, etc. from Eq. (14). Equation (1#)the basis for most
variableload fatigue analysis and is used extensively in bearing life prediction.

Weibull analysis
Welibull distribution f unction

In 1939,W. Weibull [6,7] developed a method and an equation for statistically
evaluating the fracture strength of materials based upon small population sizes.
This method can be and has been applied to analyze, determine, and predict the
cumulative statistical distribution of fgue failure or any other phenomenon or
physical characteristic that manifests a statistical distribution. The dispersion in life
for a group of homogeneous test specimens can be expressed by

1 AL-L. 0

Inin==ein®———9 where 0<L<n; 0<S<1 (16)
a_b' Lgo
(; -

whereSi s the probability 8®1);sisthevsiopeaflthea s

Weibull plot; L is the life cycle (stress cycled), is the location parameteor the
time (cycles) below which no failure occurs; dngis the characteristic life (stress
cycles). The characteristic life is that time at which 63.2 percent of a population
will fail, or 36.8 percent will survive.

The format of Eq. (16) is referred to as a thpaeameter Weibull analysis. For
mosB if not ald failure phenomenonthere is a finite time period under operating
conditions when no failure will occur. In other words, there is zero probability of
failure, or a 10@percent probability of survival, for a period of time during which
the prdability dersity function is nonnegative. This value is represented by the
location parametdr,, Without a significantly large data base, this value is difficult
to determine with reasonable engineering or statistical certainty. As a tggislt,
usually assumed tioe zero andeEq. (16)can be written as
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1
Inlngzeln ~ whereO<L<wn;0<S<1 (17)

0O ?BQJO
£
|-O: OO

This format is referred to as the tyarameter Weibull distribution function.

The estimated values tlie Weibull slopee andLy for the twoparameter Weibull
analysismay not be equal to those of the thrggarameter analysis. As a result, for
a given survivability valu&, the corresponding value of lifewill be similar but
not necessarily the same in each analysis.

By plotting the ordinate scale as In In§/and the abscissa scale asLlna
Weibull cumulative distribution will plot as a straight line, which is called a
AWei bul | pl ot . o Usually, t he ordinate
specimens faileér whereF = [(1T § x 100].Figure Xa)is a generic Weibull plot
with some of the values of interest indicatEdyure 1(b) is a Weibull plot of actual
bearing fatigue datalhe derivation of the Weibull distribution function can be
found in Appendix A.

The Welibull plot can be used to evaluate any phenomenon that results in a
statistical distribution. The tangent o
(al so called the AWeibul |l s andgesigngtedr a me t
by e, definesthe statistical distribution. Weibull slopes of 1, 2, and 3.57 represent
exponential, Rayleigh, and Gaussian (normal) distributions, respectively.

The scatter in the data is inversely proportional to the Weibull slope; that is, the
lower the value of the lbull slope, the larger the scatter in the data, and vice
versa. The Weibull slope is also liable to statistical variation depending on the
sample size (data base) making up the distribution [24]. The smaller the sample
size, the greater the statisticalriation in the slope.

A true fit of a tweparameter Weibull distribution function (Fig. 1) would imply
a zero minimum life ofL, = 0 in Eq. (16). Tallian [25] analyzed a composite
sample of 2500 rollingglement bearings and concluded that a good fit was
obtained in the failure probability region between 10 and 60 percent. Outside this
region, experimental life is longer than that obtained from thepmrameter
Weibull plot prediction. In the early failure region, bearings were found to behave
as shown irfFig. 2. From the Tallian data, it was found that the location parameter
for the threeparameter Weibull distribution of Eqg. (16) is 0.063, whereL,q is
that value obtained from the twaarameter Weibull plot (Eqg. (17) and Fig. 1) [15].
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1
InlnS

arctan e

(a)

Statistical percent of bearings failed, In In(1/S)

(@)

2
1 2

Figure 1. Weibull plot where (Weibull) slope or tangent of line as probability of
survival, $, is 36.8 percent at which = Lg, orL = Ly = 1. (a) Schematic. (b) Rolling

element bearing fatigue data.
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Figure 2. Two-parameter Weibull plot of bearing life digtution in early failure region
[25].

Weibull fracture strength model
Weibull [6,7,2627] related the material strength to the volume of the material
subjected to stress. If the soliereto be divided in an arbitrary manner imo

volume elements, the probability of survival for the entire solid can be obtained by
multiplying the individual survivabilities together as follows

$=5& &3 (18)
where the probability of failur€ is
F=1-S (29)

Welibull further related the probability of survivdl the material strength, and
the stressed volun¥according to the following relatio

== f(X)av (20)
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where

f(x)=s® (21)

s~e\£\ 22
&/ { (22)

From Eq. (22)for the same probability of survival the components with the larger
stressed volume will have lower strength (or shorter life).

Bearing life models

Weibull fatigue life model

In conversationsE.V. Zaretsky had with W. Weibull on January 22, 1964,
Weibull related that he suggested tdis contemporaries A. Palmgreand G.
Lundberg in Gothenberg, Sweden (circa 1944), to use his equation (Eq. (20)) to
predict bearing (fatigue) life where

f(x)=t°ne (23)

and wheret is the critical shear stress anddis the number of stress cycles to
failure.

In the pasiE.V. Zaretsky hasredited this relation to Weibull. However, there
appears to bao documentation of the above ray publicatiorof the application
of Eqg. (23) by Weibull in the open literature. However,[28] Poplawskiet al
applied Eq. (23) toEq. (20) where

)& e1d® o
gtu &y

The parameterc/e is the stresdife exponent. This implies that the inverse
relation of life with stress is a function of the life scaff@feibull slope)or data
dispersion.
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Referring toFigs. 3 and 4for point contactand line contact, respectivelthe
stressed volump] is defined as

Point contactV =al| z (25a)

Line contactV =1l z (25b)

Normal load, Py

Figure 3. Ball-race model for point contact.

Normal load, Py,

Roller —

— Contact area

Figure 4. Roller-race model for line contact.
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The depthz to the critical shear stredsbelow the Hertzian contach the
running trackis shown in Fig. 5The length of the running tc& is |, andl;is the
roller width.

The critical shearing stress can be amg or a combination of the maximum
shearing stress,max the maximum orthogonal shearing streigs,the octahedral
shearing stresk,, or thevon Mises shearing stressy. Thevon Mises shearing
stress is &ariationof the octahedral shearing stress.

From Hertz theory11,29] for point contact fig. 3), V andt can be expressed
as a function of the maximum Hertz (contact) str&gs,[29], where

t ~ Smax (26a)

V ~ Shax (26b)

Substituting Egs. (26a) and (26b) in Eq. (24) Brido r  d ,

élcﬁelff% 1
e—~

L~& 0

Eesmax + @Smax H Shhax

(27)
From [28], solving for the value of the exponenfor point contact (ball in a
raceway) from Eq. (27) gives

_ct+2
n=—- (28)

From Hertz theory for line contact (roller in a raceway, Fig. 4),

V'~ Shax (29)

Substituting Egs. (26a) and (29) in Eq. (24) afdo r d ,

C
Lo e 1 ﬂ/eé 1 ﬂ% 1
& ~
éSmaxu eSmaxu S%ax

(30)
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Normal load, Py

I / Gy T

/ R Gz maximum
\L Ny !_i/ l Direction
A X x of rollin
r --—b—----i b/—- I\ °
L Rb

~ Depth to
critical Gz
shearing
stress :T-:EZX
Oy <— ngxb Oy
(a) {
Oz

Along centerline, y

Values of stress components, 6; maximum
00.0 0.2 0.4 0.6 0.8 1.0

_ -~ Maximum
shear

Distance from contact surface, z/b
w

Figure 5. Subsurfacestress field under line contact. (a) Hertz stress distribution for roller
on raceway showing principal stresses at distateatow surface. (b) Distribution of
principal and shearing stress as a function of dept#iow surface.
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Solving for the value of for line contact by substituting Egs. (25a) and (28) into
Eq. (26) gives

_c+1
n==_= (31)

From Lundberg and Palmgren [83r point contactc = 10.33 ande = 1.11.
Thenfrom Eq. (28),

S_C+2_1033+2

=1112
o (32)

From Hertz theoryZ9] for point contact,

Smax ~ P% (33)

From Eq. (27) for point contact,

L 1 1 (343)

= DY a
Smax P\

Combining Egs. (33) and (34a) for point contact, and solving,for

P= n_gre 34b
3 3 (34b)

From Eq. (32) whera=11.12
1112

p=——= 3.7 (340)

3
For line contact from Eq. (31),
n:C+1:10'33+1:10.21 (35)

e 1.11

From Eq. (30) for line contact,
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L~ 1 1 (363)
5 a
Smax Py
From Hertz theoryd9] for line contact,
Smax ~ P2 (36b)
Combining Egs. (36a) and (36b) and solvingddor line contact,
n_c+l 1021
=—=— =" "=§H51
P 5" e 5 (36¢)

In their 1952 publication [1Q]Lundberg and Palmgren assureefor line
contact equals 1.125, therordn Eqg. (35)n = 10.1, and from Eq. (36¢p = 5. From
Weibull, the values of the strebfe and the loadife exponents are dependent on
the Weibull slopee, which for rollingelement learings can and usually varies
between 1 and 2. As a result, the values can be only valid for a single value of the
Weibull slope. As an examplé in Eq. (32) for point contact, a Weibull slopef
1.02 were selectedah = 12 andp = 4 from Eq. (34b). Tése values did not fit the
bearing data base that existed in the 1940s.

Lundberg-Palmgren model

In 1947 Lundberg and Palmgren [@plied the Weibull analysis to the
prediction of rollingelement bearing fatigue life. In order to account for the
variation between the values of the Hertz strEfesexponentn and the loadife
exponentp from those experimentgl determined at the time, they introduced
another variable, the depth to the critical shearing siresgheh power wherd(x)
in Eqg. (20) carbe expressed as

Ci.©
f(x)="" 37)

The rationale for introducing’ was that it took a finite time period for a crack
to initiate at a distance from the depth of the criticalasing to the rolling surface.
Lundberg and Palmgren assumed tHa# time for crack propagation was a
function ofZ".
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Equation (24) thus becomes

elt/eldj/[ ]/

&U &/ (38)

For their critical sheang stress, Lundberg and Palmgren chose the orthogonal
shearing stresg&:rom Hertz theory29],

Z~ Smax (39)
For point contact, substituting Egs. (26a), (26imd (39) in Eq. (38) andfor q,
e 1 Ceé J

L-60 65U [Sna'® -

éSmax u @Smax H Smax

(40)
From [28], solving for the value of the exponemtfor point cntact (ball on a
raceway) fronEq. (40) gives

_Cc+2-h
e

(41a)

From Lundberg and Palmgren [9]sing values of 1.11 fag ¢ = 10.33 andh =
2.33, from Eqg. 41a) for point contact

_ 10.33+2- 2.33 _ 41b
1.11 (41b)
From Eq. (34b) for point contgattheren = 9,
n_9
=—=—=3
P 3 3 (41c)

For line contact, substituting Eqgs. (26a), (28)d (39) in Eq. (38) andfor q,
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e 1 8% 1 g% 1 0% 1

" SSmax SSmaxd SSmaxti S )
From Eq. (42) solving fon for line contact
= c+1- h (43a)
e
Using previous valueofc andh, ande = 1.125 for line contact
= 10.33+1- 2.33 _ 3 (43b)
1.125
From Eq (36b) for line contact,
p= g = g =4 (43c)

Thesevalues ofn andp for point and line contastcorrelated to the theexisting
rolling-element bearing database.

In their 1952 papefl0], Lundberg and Palmgren modified their value of the
load-life exponentp for roller bearings from 4 to 10/3. The rationale for doing so
was that various roller bearing types had one contact that is line contact and other
t hat 1 s poi nt .c.anardecthe.contlchsdatweasntthe mkerd i
the raceways transformsom a point to a line contact for some certain load so that
the life exponent varieBom 3 to 4 for differing loading intervals within the same
bearing. 0 Thand|ISQsthdardsBN A incorporatep = 10/3 for
roller bearingsComputer codefor rolling-element bearirngincorporatep = 4.

Strict series reliability
Figures 6 and 7 show schematics of de@poove andangularcontact ball
bearing. Figure8 is a schematic of a roller bearing.om Egs. (20) and B0), the

fatigue life L of a bearing inner or outer race determined from the Luneberg
Palmgren theoryQ] can be expressed as follows:

6 6 - - - q (44)
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whereN is the number of stressdgs per innerace revolution and is a material
life factor basedupon air-melt, pre1940 AISI 52100 steéland mineral oil
lubricant

: Outer ring, — - oD
\
/F Shoulders
Inner ring, —
IR
“~— Bore
Outside corner
diameter,
oD

K Inner
raceway

e — Outer
raceway

Do

(b) \ J

Figure 6. Deepgroove ballbearing. (a) Schematic. (b) Cross section without cage.

® NumberedAlSI steel gradeare standardized by tenerican Iron and Steel InstitutalSl).
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P Quter
race

Inner
race —

AN /

Figure 7. Ball-race conformity. (a) Deegroove ball bearing. (b) Angulaontact ball
bearing.

Outer ring — _ — Flange

Shoulder —

~— Inner ring
Oré _ — Raceway

Figure 8. Schematic of cylindrical roller bearing with inner raceway. Bearing
accommodates axianovement by not restraining rollers axially on inner raceway.
Similar bearing with flanged inner ring allows axial roller movement on outer raceway.
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In general, for ball and roller bearings, the running track lengths for Eqgs. (25a)
and (25b) for the inneand outer raceways are, respectively,

I|_ir =pD; = p(de - d cosb) (45a)
and
I, =PD, =pk(de +dcosh) (45b)

whered, is the bearing pitch diameter (see Fig. 6).

In Eq. (45b),k is a correction factor that can account for variation of the
stressed volume in the outer raceway. Equations (45a) and (45b) without the
correction factok are used in the LundbeRpingren theory [9] to develop the
capacity of a single contact on a raceway, assuming that all theabalay loads
are the same. In Eq. (45b), for an angulantact bearing under thrust load only,
k=1.

Under radial load and no misalignment, the str@ssdumeV of a stationary
outer race in a roller bearing or degqmove ball bearing varies along the outer
raceway in a load zone equal to or less than .1B0the ANSI/ABMA and ISO
standards [12,14] for radially loaded, rollle¢ement bearings, Eq$45a) and
(45b) are adjusted for inneace rotation and a fixed outer race with zero internal
clearance, using systelife equations for multiple single contacts to calculate the
bearing fatigue life. The outer raceway has a maximum load zone of A80
equivalent radial loadP.; was developed by Lundberg and Palmgren [9] and is
used in the standards [12,14]. The equivalent Rgdnimics a 180 ball-race load
distribution assumed in the standards when pure axial loads are applied. It is also
used throubout the referenced standards when combined axial and radial loads are
applied in an angulacontact ball bearing.

Equations 45a) and 45b) are applicable for radially loadedller bearing and
deepgroove ball bearings where thaling elemertraceway ontact diameters are
at the pitch diameter plus or minus ttwdler/b a | | di ameterkg<l.cos
The maximum Hertz stress values are different at eaclotbadller-race contact, at
the inner and outer races, and vary along the arc in the zooentdct in a
predictable manner. The width of the contaaf@ a ball bearing (Fig. 3and the
depthz for both ball and roller bearings (Fig. &) the critical shearing stressare
functions of the maximum Hertz stress and are different at the indeswer race
contacts.
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From Jonesd9], for a ball bearing with a rotating inneaceand a stationary
outer ace the number ofstress cycledN;; and N, for a singleinnerracerotation
for single points on the inneand outeraces, respectively, are

za d Q
Eé% d_e 8 (46a)
Za d 6
E% d_e 8 (46D)

From Es. (12) and (17) from Weibul6,7], Lundberg and Palmgren [8}st
derived the relationship between individual component life and system life. A
bearing is a system of multiple components, each with a different life. As a result,
the life of the systens different from the life of an individual component in the

system. Thd. ;o bearirg system life, wher®0 percent of the population survives,
can be expressed as

1 _1 1 n
= 4

e e e

I‘10 I‘1O|r I‘100r

where the life of the rolling elements, by inference, is incorporated into the life of
each raceway tacitly assuming that all components have the same Weibai# s

where thel,q life of the bearing will be less than the, life of the lowest lived
component in the bearing, which is usually that of the inner fidus is referred to

asa Astrict series reliabilityo opedguat i o
designed and operated rollh@dement bearings, fatigue of the cage or separator
should not occur and, therefore, is not considered in determining bearing life and

reliability. From Egs. (17) and (44), Lundberg aRdimgren [9]derived the
following relation:

P

e

D
€q

Lip = (48)

8
1-O: OO

Equation (48) is identicalot Eq. (8) proposed by Palmgren [#] 1924 if p
equal 3 From LundbergPalmgren [9] the loadlife exponentp equals 3 for ball
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bearings and 4of roller bearings. However, as previously discussed, hergdand
Palmgren in 1952 [1Qjroposedb = 10/3 for roller bearings.

Dynamic load capacity, Cp

Palmgren [4]proposed the concept of a dynamic load rating or capacity for a
rolling-element bearing, defined as the load placed on a bearing that will
theoretically result in & life of 1 million innerrace revolutions. He first
characterized this concept as tlsiibwn in Eq. (6) that subsequently evolved as
Egs. (9) and (10).

From Anderson [2]1]according to the Hertz theory, the dynamic load capacity
should be proportional to the square of the rolietgment diameter. From
experimenthdata, Palmgren30] found that capacity varied a$-® for balls up to
about 25 mm in diameter add* for balls larger than 2Bim in diameter.

From Eqg. (11), the dynamimad capacity varies with the number of rolling
elementsZ to the 2/3 power 7%°). However, this would only be correct for an
inverse cubic relation between load and life.

From Anderson[21], multiplerow bearings withi rows of balls may be
considered as a combination bfsinglerow bearings [21] From strict series
reliability (Appendix B) the following relation between the life of a timolv
bearing and the lives of theindividual rows is obtaine@dssuming that all rows
carry equal load

1_1+1+3+1 45

AT Al T 4 a a

L® 1§ LS LS (493)

Then

1

T (49b)
|

If each row of the bearing is loaded with a load equal todtyreamic load
capacity of one rowC;, thenlL; = 1 (i.e., one million innefrace revolutionsand
from Eq. (49D,

1
L = - (50a)
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1

The loadP¢, on the entire bearing i€, wherePg, is the equivalent bearing load.
In this case,

Peq =1iGi (51)

From Eqgs. (50b) and (51)

° ~N

gog -1

quiS T (52a)
or

Cp =¢; it Wen) (52b)

For ball bearingsy = 3andeis approximately 1.1, so that the capacity of multirow
bearings varies a8”. For radial ball bearings, the normal force between a ball and
a race varies as 1/ cos b, so twhat et Ibe i c
contact anglésee Fig. 7) The influence of the baflace conformity, bearing type,
and nternal dimensions expressed fay/(c o s®3 @wheref., is the material and
geome%r;/ coefficientTherefore the capacity afradial ball bearing varies as
(icosb .

For thrust ball bearingsthe normal force between a ball and a race varies as
1/ sin b, so that t he boraogcaocyittdyn Whasnthpr o p or
influences of the degree of conformity, of bearing type, and of internal dimensions
are included,tte capacity o thrust ball bearing varies s o s°’(tanp).

For roller bearings with line contact, the lel#@ exponent in the life equation
is 4, so that the capacity variesZ. From Eq. (52b) witlp = 4, the capacity cd
multirow-roller bearing is found to vary &’® Theoretically, the capacity of roller
bearings should be proportionallid. Experimental dat§o] indicate that capacity

varies ad{ 8dv7 .

Formulas for the dynamic load capadiiip as developetty Palmgren [30] and
Lundberg and Palmgren [9, 10] are dependent on
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(1) Size of rolling elementsd (ball or roller diameter) andl (ball or roller
length)

(2) Size of rolling elementsd (ball or roller diameter) andl (ball or roller
length)

(3) Number of rollingelements per ronZ

(4) Number of rows of rolling elements,

(5) Contact angleb (see Fig. 7)

(6) Material and geometry coefficiertt,,

They are incorporated into the ANSI/ABMA and I1SO standards [12 to 14], are
semiempiricaland are as follows:

For radial ball bearings witti ¢ 25 mm

Cp = fepli cos)?7 2 %318 (53a)
For radial ball bearings witth> 25 mm

Cp = femli cosb )07 273014 (53b)
For radial roller bearings

Cp = foril; cosb)/6 2740”27 (530)
For thrust ball bearings witth, 90°,

Cp = fcm(i cosb)o'7(tanb)22/ 3918 (53d)
For thrustroller bearings witlb , 90°,

Cp = fomlily cosb)/®(tanb)z 3/ 4a2%/27 (53€)
For thrust ball bearings witth = 90°,

Cp = foi®7z2/3g18

(53f)
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For thrust rollebearings with = 90°,
_ . \7/9,3/4 429/ 27
Cp = femlil)"/92%/4d (530)

The material and geometry coefficidgt(originally designatedc by Lundberg
andPalmgren [9) in turn depends on the bearing type, material, and processing
and the conformity between the rolling elements and the races. Representative
values off., are given in Tablé from the ANSI/ABMA standardg§13,14]. It

should be noted that the coefficidgtand the various exponentskeds. (53a)
through (53g) were chosday Lundberg ad Palmgren [9] and Palmgren |30
match their bearing data base attih®e of their writing. However, the values of

f.m have beempdated periodically in the ANSABMA and ISO standardgl8,31].

Table 1. Representativevalues of rolling-element bearinggeometry and material
coefficientf., in ANSI/ABMA Standard<® and11 ([13], [14]) for representativeolling-
elementbearing size§l8].

Bearing Bearing geometry and material coefficiéft,’
envelopesize,
d cosb Deepgroove and angulasontactball bearingS | Cylindrical (radial)roller bearing
de
0.05 6070(4610) 81.51(7329)
.10 72.16(5480) 92.62(8322)
.16 77.56(5890) 97.35(8747)
22 77.56(5890) 97.02(8767)
.28 74.27(5640) 93.02(8767)
.34 69.26(5260) | e
.40 62.94(4780) | e

#alues off., are for use witmewtons and millimetershose in parentheses are for use withnds and inches
®Prior to 1990f., was designated ds
‘Inner and outerrace conformities are equal to 0.52.

Substituting the bearing geometry and the Hertzian contact stresses for a given
normal loadPy into Eqgs. (44) through (47), the dynamic load capaCgycan be
calculated fromEq. (48). SincePy is the normal load on the maximulmaded
rolling elementit is required that the equivalent lo&gd, be calculated. Onc€p is
determinedf.m can be calculated for ¢happropriate bearing type frdag. (53).

The equivalent loadPsq can be obtained from Eq. (3)nere values oK andY
for different bearing types are given tine ANSI/ABMA standards13,14]. The
dynamic load capacitgp in the sandardsshould beC; (Egs. (53a) to (53¢)or a
radial bearing o€, (Egs. (53d) tq539g) for a thrust bearing.
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Lives determined wusing Egqg. (53) ar e
This can be a small spall or surface pit that may sighificantly impair the
function of the bearing. The actual useful bearing life can be much lohger.
should be also noted that in thdsgs. (53) where derived exponents differed from
those obtained experimentally, those exponents obtained imemealy were
substituted by Lodberg and PalmgrefD,10] for those that they analytically
derived.

loannides-Harris m odel

loannides and Harris3p], using Weibull[6,7] and Lundberg and Palmgren
[9,10] introduced a fatiguéimiting shearstress, where from Eq. (3)/

_+ e
f(x):% (54)

The equation is identical to that of Lundberg and Palmgren (Eq. 37) except for
the introduction of datiguelimiting stress where

e 1 /elrz/]/[]/

h~ & U & (55)
gl - tuy
Equation (55) can be expressed as a functidg,gfwhere
C
a 1 G/eél er 1n 1
- g 56
- 1,2 & Sty 9

loannides and Harris3P] use the same values of Lundberg and Palmgree for
c, andh. If t, equas O, then the values of thdertz stresslife exponentn are
identical tothose of Lundberg and Palmgrésgs. (41b) and (43b). However, for
values oft, > 0, nis also a function oft i t,). For their critical shearing stress,
loannides and Harris chose then Mises stress.

From the aboveE q . (48) can be r e wdimtingodoad t o
P.:
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° ~
a C 0]
LlO =& D O 57a
gpeq‘ I:)u 9 ( )
where
R, =f(ty) (57b)

When Pgq ¢ Py, bearing life is infinite and no failure would be expected. Whge=
0, the life is the same as that for Lundberg and Palmgren.

The concept of a fatigue limit for rollinglement bearings was first proposed
by Palmgren in 1924 (Eq. (5)) [4]t was apparently abandoneg him first in
1945 [5]and then agin with Lundberg in 1947 [9]n 1985, loannides and Harris
[32] applied Pamggndés concept of a f atalnggree | i m
equations in the form shown in Eq. (54). The ostensible reason loannides and
Harris used the fatigue limit was to replace the nmlt@nd processing life factors
[18] that are used as life modifiers in conjunction with the bearing lives calculated
from the LuindbergPalmgren equations

There are two problems associated with the use of a fatigue limit for rolling
element bearing. The first prigm is that the form of Eq55) may not reflect the
presence of a fatigue limit but the presence of mpressive residual stress [18]
The second problem is that there are no data inogen literature that would
justify the use of a fatigue limit for througtardened bearing &is such af\ISI
52100 and AISI N50. In fact, gpaper presented by Tosegal [33], reporting the
results of rotating beam fatigue experiments for threligtuened AlISI 52100 steel
at very low stress levels, shows conclusively that a fatigue limit doesxist for
this bearing steel.

Recent pblications by the ASME34] and tke 1ISO B5,36] for calculating the
life of rolling-element bearings include a fatigue limit and the effects ofraead
conformity on bearing fatigue life. These methods do notydver, include the
effect of ball failure on bearing life. The ISO methodased on the work reported
by loannidesBergling, and GabelliJ7]. The ASME methd as contained in their
ASMELIFE software B4] uses the von Mises stress as the critstedanng gress
with a fatigue limit value of 684 MPa (99,180 psi). This corresponds to a Hertz
surface contact stss of 1140 MP&165,300 psi). The 1ISO 281:20036] method
uses datigue limit stress of 900 MP@30,500 psi), which corresponds to a Hertz
contact sress of 1500 MPa (217,500 pE3Y].

The concepts of a fatigue limit load (bearing load under which the fatigue stress
limit is just reached in the most heavily loaded raceway contact) introduced in the
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new ISO rating method§36] is proportional to the fatigue limibadraised to the
3rd power for ball bearings (point contacthese differing values of load would
result in a 12&ercent higher loadelow which no fatigue failure euld be
expected to occur [31]sing ISO 281:20D[36] than ASMELIFE B4].

The effect of using different values of fatigue limit or no fatigue limit on
rolling-element fatigue life prediction is shown Tiable2. This table summarizes
the qualitative results obtained for maximum Hertz stresses of 1324, and
2068 MPa (200, 250, and 300 ksi) for point contact using Eq. (38) for Lundberg
Palmgren witbut a fatigue limit and Eq. (§5for fatigue limits of 684 MPa
(99,180 psi) (from ASMELIFE) and 900 MPa (130,500 psi) (from ISO 281:2007).
The results arearmalized to a maximum Hertz stress of 1379 MPa (200 ksi) with
no fatigue limit where the aient of Eq. (5% divided byEq. (38) is taken to the
c/e power of 9.3 (taken from Lundberg and Palmgreihe effect of stressed
volume was also fdored intothese calculations3]]:

c
Ly, o LSt o e
IH u
é‘t'tuj(j (58)

whereLy is the life with the fatigue limit,, L is the life without a fatigue limit,
andt is the criti@al shearing stress.

Table 2. Effect of fatiguelimit Uon rolling-element fatigudife [31].

Relative lifé*° (Eq. (58))
Maximum Hertz stressviPa (ksi)

Fatigue limit®t, MPa (ksi)

1379 (200) | 1724 (250) | 2068 (300)
0 (0), LundberegPalmgren 9] 1 0.134 0.026
684 (99.2), ASMELIFE [34] 11.910° 3152 44.6
900 (130.5), ISO 2812007 1D 23.310° 4258
[36]

Thevon Mises stress.
®Includes effect of stressed volume.

“Normalized to life at maximum Hertz stress of 1379 MPa (200 ksi) with no fdiigite

Zaretsky model

Both the Weibull and LundbefBalmgren models relate the critical shear
stresdlife exponentc to the Weibull slopee. The parametet/e thus becomes, in
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essence, the effective critical shear stidesexponent, implying that the critical
shear streskfe exponent depends on bearing life scatter or dispersion of the data.
A search of the literature for a wide variety of materials and for nonredliegent
fatigue reveals that most strdfe exponents vary from 6 to 12. The exponent
appears to be independent of scatter or dispersithe data. Hence, Zaretsi38]

has rewritten the Weibull equation to reflect that observation by making the
exponent independent of the Weibull slogewhere

f(x)=tche (59)

From Egs. (5) and (59)

/

C.
19 e

yé

N

h~

A (60)

D
cc
o)
| =
cc Q\<
D

For critical shearing streds Zaretskychose the maximum shearing strdgs
Lundberg and Palmgre®][assumed that once initiated, the time a crack takes
to propagate to the surface and form a fatigue spall is a function of the depth to the
critical shear stressz. Hence, by implication, bearindatigue life is crack
propagation time dependent. Howevenlling-element fatigue life can be
cat egor i zeyc laess fiiahtiigghu e . time @ amextiemeftyisroal a g a t
fraction of the total life or running time of the bearin§he LundbergPalmgren
relation implies that the opposite is true. To decoupéedépendence of bearing
life on crack propagation rate, Zaretsk88[39] dispensed with # Lundberg
Palmgren relation of ~ Z'®in Eq. (60). (It should be noted that at the time (1947)
Lundberg and Palmgren published their the@)y the concemo f iglfichy c | e O
and -dyoweo fatigue were only then begin
Equation (60) can be written as

N . 1
elgelg c 1

L~ -8 2=3 ~
Su VU Sha

(61)

From [2§], solving for the value of the Hertz strdgs exponentn, for point
contact fromEq. (61) gives

I’]_C'|‘Z 62
- (622)
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and forline contact

1
n=c+-=
" (62b)

If it is assumed that = 9 ande = 1.11, n = 10.8for point contact andh = 9.9 for
line contact.If it is further assumed that= 10 ande = 1.0,n = 12 for point contact
andn = 11 for line contact.

What differentiatesEq. (61) and those of Weibu(Eq. 24), Lundberg and
Palmgren(Eqg. (38) and loannidesand Harris(Eq. (%)) is that the relation
between shearing stress and life is independent of the Weibull d€ppe,the
distribution of the failure datddowever, in all four models, there is a dependency
of the Hertz streskfe exponent,n, on the Weibull slope. The magude of the
variation is least with the Zaretsky model.

Although Zaretsky 38,39] does not propose a fatiglieniting stress, he does
not exclude that concept either. However, his approach is entirely diffeoent fr
that of loannides and Harrj82]. Forcritical stresses less than the fatigumiting
stress, the life for the elemental stressed volume is assumed to be infinite. Thus, the
stressed volume of the wponent would be affected whete~ 1NV® As an
example, a reduction in stressed volum&@ipercent results in an increase in life
by a factor of 1.9.

Ball and roller set life

Lundberg and Palmgren [2]o not directly calculate the life of the rolling
element (ball or roller) set of the bearing. However, through benchmarking of the
equations with bearing life data by use of a matey@metry factof., the life of
the rollingelement set is implicitly included in the life calculationExjs. (53a}o
(530)

The rationale for not including the rollirglement set icq. (47) appears in the
1945 edition of A. Palmge n 6 s bwmhek e ] he éshat datt s
phenomenon which determines the life (of the bearing) usually develops on the
raceway of one ring or the other. Thus, the rolling elements are not the weakest
parts of the bearing éo. The database
later the LundberegPalmgren equations were obtained under radially loaded
conditions. Under these conditions, the life of the rolling elements as a system (set)
will be equal to or greater than that of the outer race. As a result, failure of the
rolling elementsin determining bearing life was not initially codsred by
Palmgren. Had it beekq. (47) would have been written as follows:
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