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Load Sharing and Profile Modification of Spur Gear Teeth
in the General Case of any Flank Geometry

G. K. Nikas, London/UK

1. INTRODUCTION

It had been quite early recognised that the life of spur gearg with
straight teeth, as well as noise and vibrations, can be significantly
"improved" by the application of an appropriate tooth profile
modification in order to minimize the dynamic effects which result from
abrupt changes of the static load distribution during a mesh cycle
([1]). This is especially obvious for low-contact-ratio spur gears. In
reference [2] for example, it was shown that noise can be reduced by up
to 10 dBA after a tooth profile optimization. In reference [3] it is
clearly shown how a tooth profile medification can increase the scoring
resistance of spur gears. A dramatic effect of tooth dynamic loading is
demonstrated in [4] and [5] where it is shown that the variable tcoth
stiffness and flank errors may sometimes cause separation of two teeth
during cooperation which further results in severe stresses and even in

tooth breakage!

To avoid all these destructive effects of tooth variable stiffness and
profile errors, one may reduce the power-to-weight-ratio. A much better
and preferable solution is to do an appropriate tooth flank
modification. For this reason tooth compliance and tooth errors

(operational, undercuts, pits etc.) have to be accurately knaown.

In a previous work ([6]) the author presented a complete and accurate

method for the calculation of the optimum profile modification, a method
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which has experimental verification (for example, there is only a 3
percent deviation between the results of reference (6] and the
experimental results of reference [3]). That method omitted tooth
errors. In the present work, the method has been extended to cover the
general case of profile errors of any form and therefore it is referred
to as a general flank geometry method. Also the case of flank geometries
other than the standard involute can rather easily be adapted by using
the Generalized Theory of Gearing ([6], [7]). The advantages of the
present method are: generality, accuracy and speed. Compared with FEM
methods for the calculation of tooth stiffness, increase of speed is
more than significant since the computer program written for the present
work needs only 1 sec of CPU time of a PC with a Pentium processor to
complete all calculations, using 1000 nodes for the discritizaticn of a

tooth flanks!

Although the case of internal invelute spur gears was initially intented
to be covered here, it was decided that it deserves a separate
publication. This paper serves as a robust tool to spur gear designer
and as a detailed guide to gear manufacturer for the purpose of creating

low-noise and long-life gears for today’s demanding applications.

2. TOOTH COMPLIANCE

Teeth deflect elastically as a result of the applied load. As a
consequense of this deflection, the load distribution between one and
two (or more) pair of teeth during a mesh cycle changes compared to that
in the case of ideal rigid teeth. Premature engagement and delayed
disengagement take place and teeth suffer from excesive stresses at the
tip and fillet area. The tip area may sometimes undergo plastic
deformationg and significant flash temperatures that cause scuffing

failure.

The ammount of tooth deflection can be calculated according to the
equations of Weber ([B8], Attia [9] and Cornell [10]. These equations
comply well with finite element results and can be safely used as a good

approximation of the real thing. More specifically, three kinds of
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deflection are considered:

(1) Bending deflection which is the displacement of the tooth axis of
symmetry with the root of the tooth being unflexible. It
incorporates bending moments and shear and normal forces.

(2) Deflection due to local surface Hertzian compression.

(3) Deflection of the tooth’s root due to the flexibility of the tooth’'s

base (assuming that the rest of tooth's body remains rigid).

We define now a compliance coefficient C that will be used throughout

this text:

C= —— (1)
where
§ : normal tooth deflection along the line of action
E : modulus of elasticity
b : face width of the gear

W : normal tooth load along the line ¢of action

The total deflection of a pair of cooperating teeth is the sum of all
individual deflections of each tooth. So:
6 =08 + 8 + & + & + & (2)
B, 1 F;1 B

‘ 2 F,2 H

where subsripts 1 and 2 refer to pinion and gear respectiwvely.
Subseripts B, F and H refer to bending, foundation and Hertz compliance
respectively. Using Eg. (1) and defining the effective Young’s modulus

of a teeth pair as
E m 2 ——r (3)

the total compliance coefficient for the teeth pair is:

2
EE CH + E1 + E:2 [E1 (Cs.z - Cv,z) i Ez (Ca.z " C?.1)] (4)

2.1 BENDING COMPLIANCE

Bending deflection is calculated assuming that the tooth is an elastic
beam based on a rigid foundation (see Fig. 1). Equating the external

work done by load W to the work of internal forces N, Q and moment M, we
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get:

where

M : bending moment, M (¥ - %) -@ (Fig. 1)

I : moment of inertia, I = b-t'/12 where t is tooth’s thickness at
position y (Fig. 1)

K : shape form factor of tooth cross secticonal area. For rectangular

areas, the theory of elasticity gives that K = (12 + 11-v)/(10 +

10-v) where v is the Poisson ratio.

shear load component, Q = W-cos(¢) (Fig. 1)

shear modulus, G = E/(Z + 2-v)

tooth cross sectional area, A = b-t

2 v a o

radial load component, N = W-sin(¢) (Fig. 1)

Using Egs (1) and (5), the bending compliance coefficient is

g = cos® () - 12-1 + [2.4 + 2.20% + tan’ ()]-1, (6)
where
Y Y 2
I - I —E_”.——dy and 1 = I ﬂ"—‘aﬂdy (7)
: 0 0 £

Integrals I1 and Iz are calculated numerically using the extended
trapezoid rule since the integration step is not constant. The
calculation of angle ¢, distance Y and thickness t is done here in the
general case of any flank geometry. For this reason, the Generalized
Theory of Gearing (GTG) ([(6], [7]) is used. The equations of that theory
will not be repeated here. Using Fig. 1, angle ¢ is the angle between
the line of load action and line AB. Through the GTG, the position of
the whole tooth body is known at every instant during a mesh cycle.

Therefore, points A and B are also known. Angle ¢ is:

= Ay - W) ~pAx - x)
x (% -x)+y -y, -v)

¢ = arctan (8)

Y is the distance of point C (Fig. 1) and line AB (which is known as

already said):
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Y = d{[{line of load action) M (tooth's centre—line}],nﬁ}

Point C belongs to the line of load action and to the tooth’'s centre-
line, which are known through the GTG. Therefore distance Y can easily
be found. Finally, thickness t can be calculated straightforwardly

because tcoth’s flanks are exactly known from the GTG for any geometry.

2.2 HERTZ COMPLIANCE

Following Weber’s analysis [8], it is assumed that the compression
effect of tooth’s load extends from contact point E down to the tooth’s
centre-line (Fig. 2). The Hertz compliance coefficient is given by the
following equation:

. :
R e B i ) z (9)

where

& @ (10)

AT . = z (11)

whereas El, Ez, vl. Vz are meduli of elasticity and Poisson ratios for
each one of the cooperating teeth respectively. Distances h1 and h2 are
easily calculated according to what is written in paragraph 2.1. The
radii of curvature pl and pz can be found for any tooth flank gecmetry
according to a previous work of the author ([11]), but the lengthy
analysis of [11] will not be repeated here. It must be mentioned that
since the Hertz compliance coefficient CH is a function of load W which
depends on tooth’s compliance on its turn, a prediction-correction loop
is necessary to assure small errors in the calculations. Using an
under-relaxation factor of 0.3, these errors are minimized to

practically zero fast.

2.3 FOUNDATION COMPLIANCE

Following Attia’s (9] analysis, verified by Cornell [10], the foundation
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compliance coefficient CF is:

2
2 2 50 X 2 - 4-y ¥ 4.82
CF = (1 = ¥ ]'COS () - 3.7 '[ ] b ‘TP—‘?F—' * ———'[1 +

2
tan ()
2.4-(1 + ¥) ] L

Variables ¢ and Y are calculated according to paragraph 2.1. Constant tF
(Fig. 1) can easily be found since points A and B are knonw in space

through the GTG, as was explained in paragraph 2.1.

3. STATIC LOAD DISTRIBUTION

The analysis of this paragraph is limited to spur gears with contact

ratios less than 2, where the dynamic phenomena are more intense. Fig. 3

shows a typical load sharing curve for rigid gears. Teeth engage at

point A and disengage at B. Along A'B' the load is transmitted through

only one pair of teeth whereas along AA' and B'B there are two pairs of

teeth in cooperation. To avoid interference or loss of contact when

two pairs of teeth are in cooperation, transmission errors at the points

of contact have to be equal. Therefore, along the line of load action:
51 + e hl = 62 te + kz (13)

where

4 : deflection due to compliance of a teeth pair,

e : relative manufacturing and/cr operational errors,

A : flank profile modifications.

Subscripts 1 and 2 refer to the first and second pair of teeth in

contact respectively. Each pair of teeth in contact bears its own part

of total lead such as:

W + W =W (14)

Using BEgs (13), (14) and (1), individual loads W1 and hg can be found as
follows:

W-C + E-b-(e_ + X -e - 1)
W . 2 2 2 1 1 (15)
1 cC +C
1 2
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Wee - E-b-(e2 SR e )

Wn = T . ¢C (16)
1 2

Il
=

In case of one pair of teeth in contact, w1

4. FLANK PROFILE MODIFICATION

In order to obtain a smooth static load sharing without the abrupt
changes shown in Fig. 3, profile modification is applied at the tips
(only) of the teeth of both pinion and gear. According to [12] this
tactic is superior to the ones where only pinion or only gear teeth
flanks are modified. The incorporation of flank error functions in the
equations is necessary because there are cases where flank errors cover
part of profile modifications in the ideal case of teeth flanks without
errors and in other cases the opposite is true. If x is the necessary
profile modification when teeth flank errors are neglected (as it is
calculated for example in [6]), then:

if e > ¢ then gears can not be optimized or repaired

if e s k then gears can be repaired and optimized

Obviously, only cases where e < ¥ will be treated in this paper.

Two different methods are used.

4.1 PROFILE MODIFICATION BASED ON CONTACT PATH MODIFICATION

This method is appropriate when teeth pair errors are a smooth,
monotonous function of position along the end parts of the path of
contact. In other words it can be used when the errors are of the same
form as the modification of contact path shown in Fig. 4. Following the
notation of Fig. 4 (which refers to involute geometry for simplicity),

the proposed modification of the path of contact abecd is:

&
)\z.\-[l—x—] 0s x<x (17)
a x b
b
A =0 xh € X < E - X (18)
E-Xz
)\=)\-[1-7] € - X =X s € (19)
d X c

where ¢ is the contact ratio and exponent z can be chosen in a way to
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obtain the smoothest load distribution, as will be shown later. If the

load at points a and d of Fig. 4 is taken to be zero and assuming that

eb = ec = 0 (no errors at points b and ¢} then from Egs (15) and (16) we
get
w-C W-Cb
ha,pmfile: E-l::c - g e Ad.profile= Tl %y 2%

A and xd of Egs (17) and (19) refer teo the path of contact.
a
The relation between A and Apnﬁih has been found geometrically by the

author ([12]) but the analysis is omitted here because it is rather

lengthy.

4.2 PROFILE MODIFICATION IN THE GENERAL CASE OF A NON-SMOOTH ERROR
FUNCTION

When errors e are not a smooth function of position along the end parts
of the contact path, the analysis of the previous paragraph is
inappropriate. In such a case either Eq. (15) or (16) is rearranged to
give:

Wee +e)-He

Az - Ai = D +ie s 8 (21)

By cheoosing the load distribution to be without abrupt changes (e.g. of
a trapezoidal form) and consequently by knowing loads W1 and wz along
the path of contact the difference of profile modifications Al and Az
can be found from Eg. (21). One more equation is necessary in order to
calculate xl and Aa. We can appropriately choose Al {or Az) and then
calculate A2 {or le from Eg. (21). This choise may be based on the
possibility of achieving the intented profile modifications in practice.
This method is quite general since it covers effectively the real case

of an arbitrary error function along tooth flanks.

5. EXAMPLE AND CONCLUSION

An example with practical interest is quoted here. It refers to involute
gears with smooth flank error functions. More specifically, errors of
the form

g =g XN , i=1,2 (22)
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where A is the profile modification in the case of teeth without errors
and ¢ is a constant are considered. Constants c, are as follows:

C1 = =0.2 and c2 = 0.6 (23)
To show the generality of the method and the accompanying computer
program, data for gear teeth have been chosen such as to deviate from
known standards. These data are: pregsure angle o = 18°, module m = 7
mm, rack dedendum h_ = 1.27-m, rack addendum hk = 1.1-m, number of
teeth of pinion Z1 = 24, number of teeth of gear Z3 = 33, teeth width
b = 10 mm, transmitted power 80 KW at 10000 RPM. The contact ratio is

3 1.87. Fig. 5 shows all compliance coefficients (subscripts "p" and

It

"g" are for pinion and gear respectively). Apart from the Hertz
compliance coefficient CH, all other coefficients are practically the
same with those in case of ideal teeth (without flank errors). The Hertz
coefficient CH exhibits a peculiarity because it is load-dependent. This
is clearly shown in Fig. 6. The static load curves are shown in Fide s
The effect of flank errors on the load distribution is more than
obvious. Following the analysis of paragraph 4.1, the smoothest load
distribution (for teeth with errors) is found for z = 2 (see Egs (17)
and (19)). If z = 1, the results are not singificantly different. If

z > 2, the load curve appreoaches the one for unmodified teeth, as it wasg
proved in [6]. Finally, Fig. 8 shows the necessary flank modifications
to achieve the smooth load distribution of Fig 7, along the path eof
contact (ng is the distance from the pitch point). Thus, gear
manufacturer knows exactly the amount of flank modification to be done

at every point along teeth flanks.

It is therefore shown that the elimination of static load abrupt
changes is a target that can be theoretically achieved. All it remains
Lo be done is to evaluate the theoretical results with a series of
experiments that will also test the possibility of achieving the

proposed flank modifications in practice.

REFERENCES

[1] H. Wwalker: "Gear tooth deflection and profile modification", The
Engineer, October 14, 1938, p. 409
[2] D.W. Barnett and A.K. Sattee: "G-NOISE An analytical approach to



932

VD BERICHTE

[3]

[4]

[5]

(el

(71

[8]

[91]

(10}

[11]

[12]

gear profile optimization for low noise emission", 1980 B.G.A.
Annual Conference

M. Yokoyama, J. Ishikawa and K. Hayashi: "Effect of tooth profile
modification on the scoring resistance of heavy-duty spur gears",
Wear, wol. 19, 1972, p. 131

K.L. Wang and H.S. Cheng: "A numerical solution to the dynamic
load, £ilm thickness, and surface temperatures in spur gears, Part
II Results, ASME trans. (J. of Mechanical Design), vol 103, 1981,
p. 188

R. Kasuba and J.W. Evans: "An extended model for determining
dynamic loads in spur gearing", ASME Crans. {0. of Mechanical
Design), vol. 103, 1981, p. 398

Th. Costopoulos and G.K. Nikas: "Minimization of spur gear dynamic
loading through the Generalized Theory of Gearing"”, proceedings of
the International Congress - Gear Transmissions ‘95, 26-28
September 1995, Sofia, Bulgaria, vol. 1, p. 52

Th. Costopoulos: "Generalized theory of gearing and tooth stress",
proceedings of the Ninth World Congress on the Theory of Machines
and Mechanisms, Politecnico di Milano, Italy, August 29 - September
2 1995, vol. 1, p. 369

C. Weber: "The deformations of loaded gears and the effect on their
load-carrying capacity", sponsored research (Germany), British
pDept . of Scientific and Industrial Research, Report No. 3, 1943
A.Y. Attia: "Deflection of spur gear teeth cut in thin rims", ASME
trans. (J. of Engineering for Industry), 1964, p. 333

R.W. Cornell: "Compliance and stress sensitivity of spur gear
teeth", ASME trans. {(J. of Mschanical Design), vol. 103, 1981,

p. 447

G.K. Nikas and Th. Costopoulos: "Generalized Theory of Gearing and
elastohydrodynamic lubrication of spur gears". proceedings of the
International Congress - Gear Transmissions "95, 26-28 September
1995, Sofia, Bulgaria, vol. 1, p. 118

G.K. Nikas: "Elastohydrodynamic lubrication and minimization of
the dynamic loading of spur gear straight teeth", diploma thesis
{in Greek), 1994, National Technical University of Athens,

Mechanical Engineering Department, Machine Elements section



VB BERICHTE 933

G N G Base
¥ I circle
A B
— Fia. 3
1CA.
By b g




934 VDA BERICHTE

297 c
@) il
i b
c 20—
L r:
O i
= =
v 197
8 =

4 €
© 10 O
g o
a - Cu
_D—S—_ CFp
E -
@) E CBQ CFS
Q Ot rr T e T T T

0.0 QL5 1.0 1.5 2.0
Contact ratio

Flg | 9
6.0 — ;
. With errors
- =
O e
@ 99 3
© =
c = N s
= = Ideal teeth
a 50 -
- -
C =
°
N 4.5 -
y = =
v 7
£ ]
IR e o e e U L U LS
0.0 0.5 1.0 1.9 2.0

Contact ratio

Fig. 6




WA BERICHTE 935

1907 Ideal teeth
i | Teeth with flank errors
¥y | |
R 75 | Optimized load curve (z=2)
_ |
=
o . "
O 50— -~
D — //
, =5 ol
qﬁ —y
- _|
O 25—
O —4
) _
O F|]1||I1E|[III'IILT]

0.0 0:5 1.0 19 2.0
Contact ratio

Fig. 7

10— Gear tooth
tip relief

o

Pinion tooth
tip relief

Flank modification (um)
(@] 621
1 S BO (0

&)

L7 O S I PO SO L AL T 1 O O O O P IO I A Y

-30 =20 -10 0 10 20
Xpoe (mMm)

Fig. 8




