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LIST OF SYMBOLS 

 

A  Proportionality constant (see equation (5.1)). 

A1, A2  Integration variables (equations (3.6)). 

c  Stress criterion exponent (see equation (5.1)). 

cz,x, cz,y  Auxiliary variables (equations 3.9)). 

czz,x, czz,y Auxiliary variables (equations 3.9)). 

c1, c2, c3 Constants of the lubricant density formula (see equation (3.36)). 

C1, C2, C3 Auxiliary variables (equations (5.7)-(5.8)). 

d  Auxiliary variable (see equations (3.19)). 

dz,x, dz,y  Auxiliary variables (see equations (3.19)). 

dzz,x, dzz,y Auxiliary variables (see equations (3.19)). 

D  Distance between two cooperating surfaces (equation (3.46)). 

De  Combined normal elastic displacements of the cooperating surfaces. 

Dp  Combined normal plastic displacements of the cooperating surfaces. 

Dx, Dy  Lengths of the contact ellipse semi-axes x and y. 

e  Variable defined in equation (3.39). 

e´  Life exponent (Weibull slope). 

E  Effective modulus of elasticity (equation (3.42)). 

Eroller, Edisk Moduli of elasticity of the roller and the toroidal disk. 

 eE   Complete elliptic integral of the second kind of argument e (equations 

  (3.40)). 

F1  Auxiliary variable (equation (4.10)). 

G  Shear modulus of elasticity. 

G1  Auxiliary variable (equation (4.11)). 

h  Film thickness (see figure 3.1). 

h´  Depth exponent (see equation (5.1)). 

hmin  Minimum lubricant film thickness. 

H  “Height” of the variator (see figure 7.3). 

H1  Auxiliary variable (equation (4.12)). 

J1, J2, J3 Stress invariants (equations (5.6)). 

 eK   Complete elliptic integral of the first kind of argument e (equations 

  (3.40)). 
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N  Number (millions) of stress cycles (equation (5.3)). 

p  Pressure. 

p0  Maximum Hertzian pressure. 

pH  Hydrostatic pressure (pH = J1/3). 

P  Load (supported, transmitted). 

Ps  Load supported by solid contact. 

r  “Radius” of the variator (see figure 7.3). 

(disk)(disk), yx rr  Radii of curvature of the toroidal disk’s working surface in directions x 

  and y. 

(roller)(roller), yx rr  Radii of curvature of roller’s working surface in directions x and y. 

Rmax  Maximum peak-to-valley height of surface roughness. 

Rx, Ry  Effective radii of curvature (equations (3.37)). 

s  Lubricant internal shear strain rate. 

S  Probability of survival (0 < S < 1; equation (5.4)). 

S0  Lubricant (Roelands) viscosity-temperature coefficient (see equation 

  (3.24)). 

t  Time. 

u  Fluid speed in direction x (see figure 3.1). 

zu   Normal elastic surface displacement. 

v  Fluid speed in direction y (see figure 3.1). 

VR  Risk volume (volume where || > u) (see equation (5.1)). 

w  Fluid speed in direction z (see figure 3.1). 

Y  Yield stress in simple tension. 

z´  Stress-weighted average depth (see equation (5.1)). 

Z1  Lubricant (Roelands) viscosity-pressure coefficient (see equation  

  (3.24)). 

 

  Lubricant (Barus) pressure-viscosity coefficient. 

  Constant of the limiting shear stress function (see equation (3.35)). 

  Constant of the limiting shear stress function (see equation (3.35)). 

  Combined surface roughness (equation 3.47)). 

roller, disk Roughness of the roller and the toroidal disk. 
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  Fluid dynamic viscosity. 

x, y  Fluid equivalent dynamic viscosity in directions x and y. 

0  Absolute viscosity at p = 0 and at ambient temperature. 

  Angle. 

  Lubricant temperature. 

0  Environmental temperature. 

  Lambda ratio, the ratio of the minimum film thickness to the composite 

  RMS surface roughness. 

  Parameter of the Elsharkawy-Hamrock rheology model (see equation 

  (3.32)). 

  Boundary-lubrication friction coefficient. 

disk  Calculated traction coefficient for the toroidal disk. 

roller  Calculated traction coefficient for the roller. 

roller, disk Poisson ratios of the roller and the toroidal disk. 

  Fluid density. 

0  Fluid density at ambient conditions (zero pressure and environmental 

  temperature). 

1, 2, 3 Principal normal stresses (equations (5.9)). 

u  Endurance stress limit (see equation (5.1)). 

  Shear stress. 

0  Constant of the limiting shear stress function (see equation (3.35)). 

L  Lubricant limiting shear stress. 

max  Maximum shear stress. 

zyzx  ,   Surface tractions in directions x and y. 

  Working angle (see figure 7.3). 

  Auxiliary variable (equation (4.13)).

 

 

 

 

 

 



§ 1. Introduction  7 

1. Introduction 

 

A contact fatigue model for rolling bearings was established as early as in the 

1940s by Lundberg and Palmgren, who successfully predicted the life expectancy of 

rolling bearings of their era. That model has been extensively used by other bearing 

manufactures and became an ISO standard, still being in use, with some life 

adjustment factors to account for the improved quality of modern steels and methods 

of manufacture. Ioannides and Harris (1985) extended the original Lundberg-

Palmgren model and their model has been widely adopted not only for rolling 

bearings but for other Machine Elements as well (gears, CVTs etc). 

In the case of TOROTRAK, there was the need to develop a contact fatigue 

model to study the operation of its patented Infinitely Variable Transmission (IVT) 

and, specifically, the life expectancy of the main components of the variator of the 

IVT system (shown in figure 1.1), namely the rollers and the toroidal disks. 

 

 

 

 

 

 

 

 

 

 

Figure 1.1 The TOROTRAK variator. 

Input toroidal disk 

(powered by the engine) 

Output toroidal disk 

(transmits the power 

to the drive shaft) 

Roller 

(transfers power 

from an input to 

an output disk) 
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 The variator is the heart of the transmission and its operation is crucial for the 

whole system. TOROTRAK has developed a test rig to simulate the operation of the 

variator and was in need of a theoretical model to predict analytically the lubrication 

and loading conditions that determine the fatigue lives of the rollers and the toroidal 

(input and output) disks. After discussions between Dr Richard Sayles of Imperial 

College and Mr Mervyn Patterson of TOROTRAK, it was agreed that such a 

theoretical model could be developed, based on the theoretical background and 

expertise in the Tribology Section of the Mechanical Engineering Department of 

Imperial College. It was agreed that the model should be in the form of computer 

software that can evaluate the lubrication, mechanical loading (stress analysis) and 

fatigue lives of the vital components of the variator (rollers and disks), based on input 

such as the basic geometrical parameters, real surface roughness, sliding speeds, 

material properties, transmitted load, etc. Furthermore, the software would be used to 

draw conclusions regarding the importance of the various parameters of the model 

(for example the importance of the lambda ratio) and, thus, provide guidelines in the 

development of a CVT rig. 

 The author was appointed as the researcher of this 18-month project and 

undertook the task of developing the theoretical model and the accompanying 

computer code. The computer code is specifically written for CVTs and remains 

intellectual (Copyright) property of the author, with full permission for its use given 

only to TOROTRAK DEVELOPMENT LTD. 

 In the next pages, a complete description of the model is presented together 

with examples/applications of the computer program, followed by suggestions for 

future work and an extensive list of references. 
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2. Parameters of the CVT model 

 

 The lubrication of CVTs is the most theoretically challenging task among all 

similar problems in Machine Elements (bearings, gears etc). This is because of the 

following reasons. 

(1) The contact geometry is two dimensional (elliptical contact). 

(2) The contact operates under mixed rolling-sliding/spinning conditions. 

(3) The surfaces are rough, rougher than in bearings but usually not as rough as in 

gears. 

(4) The fluid pressures are normally high (usually higher than 1 GPa). 

(5) Because of the sliding/spinning and high shear strain rates in the lubricant, non-

Newtonian characteristics of the lubricant must be accounted for. 

(6) Because of the traction nature of CVTs, there are fluid thermal effects that can not 

be ignored. 

(7) The contacts often operate in the partial or even boundary lubrication regime (film 

thickness less than 0.5-1 m, lambda ratio less than 3-5). 

(8) There are often roughness asperity interactions, which give rise to local frictional 

heating and complicated thermoelastic/plastic events at asperity scales. 

(9) There are transient effects that must be taken into account (rapid changes of the 

transmitted load, speeds and contact geometry). 

 

 The above characteristics infer that the only lubrication equation which can 

effectively describe such problems is the Reynolds equation in its most general form, 

without any simplifications. The Reynolds equation is a partial differential equation, 

which has the great disadvantage of being very unstable during numerical 

manipulation, requiring significant amounts of computing power and memory to 

overcome its instability with the use of dense grids, especially when dealing with 

rough surfaces and transient processes. The numerical solution of the Reynolds 

equation has been in the frontier of Tribology for the last 30 years and, even at the end 

of the 20
th
 century, there are still many unanswered questions regarding the 

explanation of the numerical results obtained with different methods. At the time of 

writing this report (November 1999), no one has yet come forward to present a 

numerical solution of the general equation, although there are a few research teams 

world-wide that are very close to this landmark.



§ 2.1 Lubricant thermal effects  10 

 In the frame of the current 18-month project, and based on the author’s prior 

experience on this field, it was decided that the available time was barely sufficient to 

develop a numerical method to solve the general Reynolds equation, with fluid and 

asperity thermal effects being left out of the model. Both of the previous two effects 

are expected to have a role in the life expectancy of a CVT. Below, a brief discussion 

of the various aspects affecting the lubrication of a CVT is presented together with the 

reasoning behind the selection of which aspects are incorporated in and which are 

excluded from the present model. 

 

 

 

 

2.1 Lubricant thermal effects 

 In a sliding/spinning contact like the contact of a CVT, the lubricant is sheared 

internally and, hence, heated. There is also a very small amount of heat produced due 

to the compression of the lubricant when passing through the high pressure (central) 

zone of the contact. The internal friction coefficient of the lubricant depends on the 

nature of the lubricant itself, but a value of around 0.06 for mineral oils is generally 

agreeable. Because of the high lubricant pressures experienced in heavily loaded CVT 

contacts (pressures over 1 GPa), even a small friction coefficient of 0.06 accounts for 

lubricant heating that results in local (internal) lubricant flash temperatures 

(temperature increments over the bulk temperature) of 50-100 C. If the bulk 

temperature is taken into account (for a CVT this could roughly be between 50-100 

C), the overall local lubricant temperature could be as high as 200 C. This level of 

temperature is over the melting limit of even lubricants with Extreme Pressure (EP) 

additives (critical temperature around 150 C). In other words, the lubricant may 

experience zones of local melting and collapse, leaving the cooperating surfaces 

unprotected. 

 It is then understood that the modelling of thermal effects is essential in any 

algorithm before more accurate conclusions can be drawn. However, it is recognised 

in the literature that the behaviour of lubricants at high pressures and temperatures has 

yet to be accurately explained and modelled. It is now widely speculated that, under 

high pressure, lubricants act like low modulus solids and this regime of state is 
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characterised as “glassy”. This effect will be further discussed later in the section 

dealing with the non-Newtonian behaviour of lubricants. 

 Because of time limitations of the current project, it was decided that lubricant 

thermal effects will be left out from the developing model. In doing this, it is 

recognised that the calculated film thickness will be slightly overestimated. This in 

turn will result in reduced roughness asperity interactions and, thus, smoother loading 

of the cooperating surfaces. However, it is understood that in the frame of the 

accuracy of the developed computer model, these effects are of secondary importance 

for fatigue life calculations and more important when aiming for more accurate 

traction modelling, i.e. when calculating the traction coefficient of the CVT (which is 

not the primary target of this project). Thermal effects will be incorporated in a future 

extension of the present model when traction calculations are of importance. 

 

 

 

 

2.2 Thermal stresses from asperity interactions 

 Roughness asperities that collide to each other during the sliding motion of the 

cooperating surfaces of a CVT, result in local frictional heating. The produced heat is 

of a transient nature and dissipates (mainly) by conduction into the solids (roller and 

toroidal disk) of the CVT, raising the local temperature. These flash temperature 

events are of a very short duration (usually less than one thousandth of a second). 

Nevertheless, they still give rise to local thermal stresses. 

 Compared with mechanical stresses from a normal and tangential loading, 

thermal stresses have a much shorter range of action but a much higher magnitude. 

Their effects therefore are localised very close to the surfaces. It was found in Nikas 

(1999) that in the case of a surface heat source in the shape of a disk, the thermal 

stress effect disappears at a depth equal to the radius of the disk. Applying this 

conclusion for a heat source the size of a roughness asperity with a base of 4 microns 

in diameter, the effective depth of thermal influence from this asperity is 1-2 microns 

below the surface. 

 These effects may become important when the CVT is operating in the partial 

or boundary lubrication regime, i.e. when the lubricant film is not thick enough to 
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prevent the large majority of asperity interactions. For the model of the current 

project, asperity interactions are accounted for by means of an effective local 

tangential loading between interacting asperities, based on the calculated local 

pressure and an assumed friction coefficient for boundary lubrication (usually 0.06). 

Thermal stresses from asperity interactions are ignored and may form part of a future 

extension of the current project. 

 The exclusion of asperity thermal stressing from the present model is expected 

to result in a slight overestimation of the life expectancy of the CVT, but only when 

the CVT is working at very low lambda ratios (lambda ratio < 1-2) for long periods of 

time during its operational life. However, considering the number of different factors 

already incorporated in the current version of the model, it is believed that the 

omission of asperity thermal effects is justified and will not yield unrealistic CVT 

fatigue life results. 

 

 

 

 

2.3 Lubricant non-Newtonian effects 

 A typical contact of a CVT is a sliding/spinning contact. There is usually a 

significant amount of sliding, which means that the lubricant used experiences high 

shear rates. Moreover, the contact is usually under high fluid pressures (pressures over 

1 GPa). High pressures and shear strain rates result in non-Newtonian behaviour of 

the lubricant, i.e. the relationship between the shear strain rate and the shear stress in 

the lubricant is not linear as it is assumed for Newtonian behaviour. 

 Furthermore, there is now substantial experimental evidence in the literature 

that beyond a certain pressure and temperature, the shear stress no longer increases 

with the shear strain rate in the lubricant and the lubricant behaves like a low modulus 

plastic solid (“glassy” state). The critical value of the shear stress when this behaviour 

commences is named “limiting shear stress”. The accurate value of this limiting shear 

stress is of great significance for traction calculations in CVTs because, as is shown 

later in this report, most of the contact is operating under this limiting-shear-stress 

regime.
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 The model developed for this project accounts for both non-Newtonian effects 

and a limiting shear stress. As a matter of fact, the Reynolds equation developed for 

this particular CVT application is generalised in the sense that it allows the use of 

many different non-Newtonian laws to describe lubricant behaviour, all of which have 

the concept of a limiting shear stress implemented to them. It must be noted though 

that the differences between different non-Newtonian laws are not significant (as it 

came out from the results of this project) and the variety of choices offered to a 

designer/researcher does not lead to conflicting results. 

 

 

 

 

2.4 Surface roughness effects 

 The working surfaces of the roller and the toroidal disk of a CVT are normally 

rough. In the case of a TOROTRAK variator, a typical RMS roughness value is 0.2 

m. Roughness asperities are known to produce lubricant pressure ripples and are 

normally elastically flattened to a significant extent when subjected to the high 

elastohydrodynamic pressures encountered in typical CVT contacts. Pressure ripples 

(variations) are vital in any fatigue life model as it is normally these irregularities that 

govern the onset and propagation of cracks that lead to spalling (fatigue failure). It is 

therefore essential for any computational model to account for these effects, 

especially when combined with the observations of § 2.2. 

 As a result, the present model allows for any 3-dimensional surface profile to 

be used, either be it artificially created or measured experimentally. As an added 

benefit of using real (experimentally measured) rough surface profiles, any surface 

defects (bumps, debris dents etc) can be used in the analysis and their effect on fatigue 

life be evaluated.
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2.5 Transient effects 

 During the operation of a CVT, rapid changes of the transmitted load are 

normally expected, owing to the ever changing demands for torque or speed. Such 

load changes may be accompanied by changes in the spinning speeds of the roller and 

the toroidal disk, and also the working angle between the roller and the toroidal disk, 

the latter inferring changes in the geometrical parameters (radii of curvature) at the 

area of the contact. All these effects are transient and often random in nature. For 

example, when the CVT is used on a road vehicle, the operation load (torque) is 

decided by the demands of the driver of the vehicle and, although a CVT can be pre-

programmed to act as a manual gearbox with specific (predetermined) gear ratios, in 

general, “gear (ratio) changes” still consist a transient action. 

 For a realistic simulation of the operation of a CVT, transient effects must be 

modelled by means of a representative series of “actions”, i.e. a set of transmitted 

loads and accompanying contact geometries and velocities that form a representative 

scenario of the real-life operation of the CVT. The model of this project allows the 

designer to give a series of working conditions (loads, surface speeds and radii of 

curvature) taken from measurements during the operation of a CVT, as a means of a 

realistic simulation. Undoubtedly, fatigue life calculations can be performed even for 

a constant load/geometry/speed scenario, but that would be unrealistic and could yield  

misleading results, namely either an overestimation or even an underestimation of the 

fatigue life. For the sake of a relatively fast calculation of the fatigue life, a constant 

load/speed/geometry can be used, but for more accurate predictions, a real working 

example should be tested.
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3. Solution of the lubrication problem 

 

 This section is devoted to the development of a generalised form of the 

Reynolds equation that describes the lubrication of a concentrated contact. The 

analysis is generalised in the sense that it allows the use of any non-Newtonian law to 

be used in the Reynolds equation without any modifications. A similar analysis was 

presented by Yang and Wen (1990a). 

 

 

 

 

3.1 Development of a generalised lubrication equation 

 Figure 3.1 shows a fluid element in contact with the cooperating surfaces of a 

lubricated contact. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1     Fluid element in contact with the cooperating surfaces in a EHL contact. 

 

 

From the force equilibrium on the fluid element, the following two equations are 

derived. 

 

zx

p zx








 
     ,     

zy

p zy








 
                                                                                    (3.1) 

v2 

v1 

u2 

u1 

z, w y, v 

x, u 

Surface 2 

(z = h) 

Surface 1 

(z = 0) 



§ 3.1 Development of a generalised lubrication equation  16 

where p is the fluid pressure, which is constant across the film, and zx and zy are the 

viscous shear stresses on the fluid element, given by 

 

z
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xzx
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                                                                               (3.2) 

 

where u and v are the tangential velocities of the counterfaces (shown in figure 3.1), 

and x and y denote the equivalent viscosity in direction x and y respectively. This 

equivalent viscosity formulation allows the incorporation of any non-Newtonian 

model, as is shown later. For a Newtonian fluid, the equivalent viscosity is equal to 

the usual dynamic viscosity. 

 Using equations (3.1), equations (3.2) yield: 
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Integrating the first of equations (3.3) twice with regard to z gives 
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where A1 and A2 are integration functions of the spatial variables x and y, as well as of 

time t. Assuming the classical zero-slip condition holds at the solid-fluid interface, the 

following velocity boundary conditions apply. 
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Using the first condition (3.5) (for z = 0), integration functions A1 and A2 can easily be 

found: 
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where h is the thickness of the fluid element (figure 3.1). Taking A1 and A2 from 

equations (3.6), equations (3.4) give 
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Similarly, fluid velocity v is given by 
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In order to make the previous expressions more compact, the following functions are 

defined: 
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Using equations (3.9), equations (3.7) and (3.8) are simplified as follows: 
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 Having found suitable equations to calculate the fluid velocities u and v, the 

continuity equation can now be applied: 
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where  is the fluid density. Integrating the mass conservation equation (3.11) with 

respect to z between the two solid boundaries (z = 0 and z = h), the following equation 

is derived: 
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From the mathematical analysis of multivariable functions, the following rule of 

integration is known for functions f(x,y,z) that are continuous and have continuous 

partial derivatives: 

 

       
x

b
byx

x

a
ayxdzzyx

x
dzzyx

x

b

a

b

a 



























 ,,f,,f,,f  ,,f  
  

  

  

  

        (3.13) 

 

Rule (3.13) is applied to the integral terms of equation (3.12) with the following 

results: 
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The film thickness h is a function of space and time, i.e. h = h(x,y,t). Therefore, the 

total derivative of h is 
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Equation (3.15) further gives: 
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Using equations (3.14) and (3.15) in (3.13), the result is 

 

0      
  

0  

  

0  

  

0  












































hhh

dzv
y

dzu
x

dz
t

                                      (3.17) 

 

Fluid velocities u and v are now taken from equations (3.7) and (3.8) and used in the 

relative integral terms of equation (3.17): 
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where 
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Finally, using equations (3.18) in (3.17), the lubrication equation is derived: 
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Equation (3.20) is a generalised form of the Reynolds equation for transient, rough, 

non-Newtonian elastohydrodynamic lubrication problems. In essence, this equation 

relates the fluid pressure and the film thickness in a lubricated contact. The 

generalised treatment of lubricant rheology models is presented in the next section.
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3.2 Lubricant rheology models 

 In the classical Newtonian approach, the relation between the shear stress  

and shear strain rate s between two adjacent lubricant layers is assumed linear. 

However, as was explained earlier, for high fluid pressures and shear strain rates, this 

relationship becomes non-linear. Therefore, treating a traction fluid - that must serve 

CVT contacts under extreme working conditions - as Newtonian is not accurate. The 

development of a generalised lubrication equation in § 3.1 served precisely this 

purpose: to allow the application of virtually any rheology model in the CVT model 

and give the designer/researcher freedom of choice for experimentation. The 

computer code written for this project has a number of pre-programmed rheology 

models, all of which are presented below. According to the notation used, the shear 

stress is  = zx or  = zy, whereas the shear strain rate is s = u/z or s = v/z. For a 

more realistic approach, the concept of a limiting shear stress (discussed in § 3.3) was 

used even in the Newtonian model, which, originally, did not have any limitation. 

 Integrating equations (3.1) with respect to z, yields: 
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Equations (3.21) are needed in the numerical solution of the lubrication equation, 

when the non-Newtonian rheology models are used, as is shown later. 

 

 

 

3.2.1 Newtonian rheology model and lubricant viscosity 

 This model is valid only for relatively low pressures and shear strain rates. The 

relation between fluid internal shear stress  and shear strain rate s is linear: 

 

s                                                                                                                    (3.22) 

 

where  represents the dynamic viscosity of the fluid, which, generally, depends on 

the pressure and temperature of the fluid. 
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 There are two widely used formulas in the literature, that give the dynamic 

viscosity of  a fluid: the one proposed by Barus (1893) and the one proposed by 

Roelands (1966). The classical Barus’ formula reads as follows: 

 

pae  0                                                                                                              (3.23) 

 

where 0 is the absolute viscosity at p = 0 (ambient pressure) and at a constant 

(representative) temperature, and  is the pressure-viscosity coefficient of the 

lubricant, which depends on the temperature. It has been experimentally found that for 

most lubricants, equation (3.23) gives acceptable results for pressures up to 0.1 GPa 

and becomes progressively inaccurate for higher pressures. For the large majority of 

lubricants, equation (3.23) gives unacceptably high viscosity for pressure over 1 GPa 

and, incidentally, that is the range of operation of heavily loaded contacts, as are those 

in a CVT. A generally better equation was proposed by Roelands (1966) after a lot of 

experimental work. Roelands’ semi-empirical formula, which additionally accounts 

readily for the effect of temperature on the viscosity, reads as follows (SI units only): 
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where Z1 and S0 are the viscosity-pressure and viscosity-temperature coefficients 

respectively,  is the lubricant temperature and 0 is the environmental temperature 

(temperatures in degrees Kelvin, pressure in Pa and viscosity in Pa·s). 

 Constants Z1 and  of the Roelands’ and Barus’ equations can be related 

through Houpert’s formula, derived by the fact that Roelands’ and Barus’ formulas 

must give the same viscosity as the pressure tends to zero: 
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 Equations (3.23) and (3.24) agree well for low pressures but deviate 

substantially for pressures over 1 GPa (the difference in the viscosity calculated from 

(3.23) and from (3.24) could be several orders of magnitude, depending on the 
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lubricant – see for example Hamrock, 1994, figure 4.4). However, there are some 

traction fluids (for example Santotrac 50) which, apparently, show a better agreement 

with Barus’ model, even for high pressures. Since traction fluids is the choice for 

CVTs, the model of this project allows both Barus’ and Roelands’ equations to be 

used. Moreover, due to the omission of thermal effects in the current version of the 

CVT model, as is explained in § 2.1, a representative (operation) temperature is 

chosen whenever the Roelands’ formula is used instead of a (calculated) local 

lubricant temperature (which normally varies in the contact). 

 

 

 

3.2.2 Bair and Winner (1979) rheology model 

 According to this model, the relation between the fluid internal shear stress  

and shear strain rate s is 
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where L is the limiting shear stress (see § 3.3). From equation (3.26), two equations 

are derived for directions x and y: 
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Integrating equations (3.27) with respect to z across the film thickness and using 

equations (3.21), the following results are obtained: 
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Numerical solution of equations (3.28) yields the unknown shear stresses 

        ) , 0(   and 1111

Lzyzxzyzx   , which can then be used in equations (3.21) to 

calculate the shear stresses at any position across the lubricant film. 

 

 

 

3.2.3 Gecim and Winner (1980) rheology model 

 According to this model, the relation between the fluid internal shear stress  

and shear strain rate s is 
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From equations (3.29), two equations are derived for directions x and y: 
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Integrating equations (3.30) with respect to z across the film thickness and using 

equations (3.21), the following results are obtained: 
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Numerical solution of equations (3.31) yields the unknown shear stresses 

        ) , 0(   and 1111

Lzyzxzyzx   , which can then be used in equations (3.21) to 

calculate the shear stresses at any position across the lubricant film.
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3.2.4 Elsharkawy and Hamrock (1991) rheology model (“General” model) 

 According to this model, the relation between the fluid internal shear stress  

and shear strain rate s is 
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where  is a parameter of the model that can take positive integer values (  1). For 

 = 2, the above model is identical to the Lee and Hamrock’s (1990a, 1990b) model, 

known as “circular” model. For  > 2, the Elsharkawy and Hamrock model behaves 

like other non-linear models and this is the reason why it is characterised as “general” 

model. 

 From equations (3.32), two equations are derived for directions x and y: 
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Integrating equations (3.33) with respect to z across the film and using equations 

(3.21), the following results are obtained: 
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Numerical solution of equations (3.34) yields the unknown shear stresses 

        ) , 0(   and 1111

Lzyzxzyzx   , which can then be used in equations (3.21) to 

calculate the shear stresses at any position across the lubricant film. 

 

 

 

 

3.3 Lubricant limiting shear stress 

 It is now generally accepted that the lubricant internal shear stress does not 

increase indefinitely with increasing shear strain rate, but there is a lubricant-

dependent critical value (limiting shear stress) that can not be exceeded (see for 

example Bair and Winer (1979), Hamrock (1994, § 4.15)). When the limiting shear 

stress is reached, the lubricant shears plastically with no further increase of the shear 

stress for increasing shear strain rate. Generally, the limiting shear stress L is a 

function of lubricant pressure and temperature: 

 

  pL 0
                                                                                              (3.35) 

 

where constants 0,  and  depend on the lubricant. For Santotrac 50 traction fluid 

(used in TOROTRAK CVTs), the constants in the limiting shear stress function are: 

0 = 3.17·10
7
 Pa,  = 0.093 and  = 317000 Pa/C (pressure p and shear stress L in Pa, 

temperature  in degrees Celsius).
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3.4 Lubricant shear stress components 

 As is explained in § 3.3, the lubricant shear stress  cannot exceed the limiting 

shear stress L. So far, the mathematical analysis is based on using the two 

components of the shear stress , namely zx and zy (
22

zyzx   ). Questions arise 

when any (or both) of the calculated shear stress components approach the limiting 

shear stress, on how the resultant shear stress is divided into the two (x and y) 

components. 

 The constraint that must be satisfied is: 222

Lzyzx   . From physical 

experience it is known that it is easier to remove a cork from a wine bottle by pulling 

and rotating it at the same time than by just pulling it. The same principle applies in 

the present case: when the shear strength of the lubricant is reached, the shear stress 

can no longer increase but, instead, it changes direction (see for example Jacobson et 

al., 1987). Let’s assume now that the calculated shear stress components violate the 

limiting shear stress constraint, i.e. 222

Lzyzx   . This problem is resolved as follows: 

 

 Case u > v (and (calculated)
  > L) 

If Lzx  d)(calculate
, then set   Lzxzx   d)(calculate(new) sgn  (where sgn(x) is the sign 

function of x; sgn(x) = +1 if x > 0 and sgn(x) = -1 if x < 0) and 0(new) zy . 

Otherwise, if Lzx  d)(calculate
, then set    2d)(calculate2d)(calculate(new) sgn zxLzyzy    

and d)(calculate(new)

zxzx   . 

 

 Case u < v (and (calculated)
  > L) 

If Lzy  d)(calculate
, then set   Lzyzy   d)(calculate(new) sgn  and 0(new) zx . Otherwise, if 

Lzy  d)(calculate
, then set    2d)(calculate2d)(calculate(new) sgn zyLzxzx    and 

d)(calculate(new)

zyzy   . 

 

 Case u = v (and (calculated)
  > L)
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In this hypothetical scenario, it is assumed that the shear stress components must 

be equal, thus:  
2

sgn d)(calculate(new) L
zxzx


   and  

2
sgn d)(calculate(new) L

zyzy


  . 

 

 

 

 

 

3.5 Lubricant density 

 The density of a lubricant is generally a function of pressure and temperature. 

From the original (1966) formula of Dowson and Higginson, which accounted only 

for the effect of pressure on the lubricant density (for pressures up to 0.4 GPa), a 

widely accepted generalisation, which is also used in the present CVT model, is the 

following semi-empirical formula (see for example Zhu and Wen, 1984): 
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 03

2

1
0

1
1  c

pc

pc
                                                                       (3.36) 

 

where 0 is the density at ambient conditions (zero pressure and environmental 

temperature), and c1, c2, c3 are constants, depending on the fluid. For mineral oils, a 

typical set of constants is: c1 = 6·10
-10

 Pa
-1

, c2 = 17·10
-10

 Pa
-1

 and c3 = 65·10
-5

 C
-1

 

(constants c1 and c2 are the same as those proposed by Dowson and Higginson in their 

original formula, which is derived from (3.36) by setting c3 = 0). Also, a typical value 

for the ambient density for mineral oils is 0 = 870 kg/m
3
. 

 If the effect of temperature is ignored, the maximum density increase for 

mineral oils is about 35 %, for pressures up to 2 GPa. However, at high pressure the 

lubricant is expected to change phase from liquid to solid. Hamrock (1994, § 4.14) 

suggests a formula where the solidification pressure of a lubricant is taken into 

account. Unfortunately, his approach does not account for the effect of temperature 

and requires five constants to be known before any calculations can be performed. 

Furthermore, the extremely high rate of pressure increase in a typical EHD contact is 

difficult to be experimentally replicated and evaluated in terms of a solidification 

pressure, because the phase change is extremely fast. As an example, a typical CVT 
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contact with a mean Hertzian contact radius of 500 m, maximum lubricant pressure 

of 2 GPa, and sliding speed of 3 m/s, means that the pressure rises from zero to 2 GPa 

in (500 m)/(3·10
6
 m/s) = 0.17 ms, i.e. a rate of 1.2·10

13
 Pa/s! At these rates, other 

phenomena must be accounted for, as for example the lubricant structural relaxation 

time. 

 More recently, Wong et al. (1996) proposed a different method to calculate 

lubricant density, based on the van der Waals equation of state. Their results showed 

good agreement with experiments for a pressure range 0.2-0.9 GPa. However, based 

on the arguments listed previously, equation (3.36) is still preferable for quick and 

sufficiently accurate calculations and, hence, is used in the present CVT model. 

 

 

 

 

3.6 Geometry of the contact 

 Generally, the contact between a roller and a toroidal disk of a CVT variator is 

elliptical. The lengths of the axes of the contact ellipse can be calculated if it assumed 

that the real pressure distribution is approximated by an semi-ellipsoidal (Hertzian) 

distribution p = p0·[1 – (x/Dx)
2
 + (y/Dy)

2
]

1/2
, where Dx and Dy are the lengths of the 

semi-axes of the contact ellipse in axes x and y, respectively, and p0 is the maximum 

Hertzian pressure. 

 At the area of contact, the undeformed surfaces of the roller and the toroidal 

disk of a CVT variator can be approximated by ellipsoids, having radii of curvature 

(roller)(roller), yx rr  (roller) and (disk)(disk), yx rr  (toroidal disk) in axes x and y. The following 

effective radii of curvature are now defined: 
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
                                                          (3.37) 

 

Following Johnson (1985, page 95) and assuming that the major contact ellipse axis 

lies along the x-axis, the effective radii of curvature and the contact ellipse semi-axes 

lengths satisfy the following equation:
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where 

 

)( ,     1

2

yx

x

y
DD

D

D
e 








                                                                                (3.39) 

 

and K(e) and E(e) are the complete elliptic integrals of the 1
st
 and 2

nd
 kind of 

argument e, respectively: 
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Moreover, lengths Dx and Dy are related (see Johnson, 1985, equation (4.30)) as 

follows: 
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where P is the load of the contact (assumed time-variable) and E is the effective 

modulus of elasticity 
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2
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where Eroller, Edisk are the moduli of elasticity of the roller and the toroidal disk, and 

roller, disk are the Poisson ratios. From equation (3.41), the length of the major semi-

axis is derived: 
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Then, from equation (3.39), the length of the semi-minor axis Dy is easily found: 

 

21 eDD xy                                                                                                     (3.44) 

 

In order to calculate Dx and Dy from equations (3.43) and (3.44), variable e must be 

calculated first. This is done by solving the non-linear equation (3.38) numerically. 

The same procedure is followed when the major axis of the contact ellipse lies along 

the y-axis (Dy > Dx). This method is used in the CVT analysis. 

 An alternative method is to use the formulas of Hamrock and Brewe (1983) 

for the approximation of the required elliptic integrals: 
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Then Dx and Dy are calculated again from equations (3.43) and (3.44). This method is 

used for verification of the results obtained by the resolution of the non-linear 

equation (3.38). It was found that the two methods (accurate and approximate) agree 

very well. 

 

 

 

 

3.7 Film thickness (geometry, roughness and elastic deformations) 

 The local film thickness in a lubricated contact depends on the local geometry 

of the cooperating lubricated surfaces, the surface roughness and the surface 

displacements due to the contact pressure: 

Film thickness = Constant + Geometry + Roughness + Displacements 
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 The geometry of the surfaces at the area of the “contact” is approximated by 

ellipsoids (see § 3.6 and equations (3.37)). In doing so, and assuming that the 

effective radii of curvature of the surfaces are Rx and Ry (equations (3.37)), the exact 

distance D between the two cooperating surfaces is 

 

  2222, yRxRRRyxD yxyx                                                              (3.46) 

 

where x and y are measured from the centre of the contact (0,0). 

 The combined surface roughness  is the sum of the roughness of each 

surface, roller and disk. However, in the case of asperity interactions, there is a 

significant probability of local deformation of individual asperities. If this happens, 

the roughness must be modified in real time. Therefore, the equation of the combined 

surface roughness  must allow for a term that accounts for any possible plastic 

deformations: 

 

       tyxDyxyxtyx pdisk ,,,,,, roller                                                        (3.47) 

 

where Dp(x,y,t) gives the local plastic deformation of the surfaces, if there is one, and 

is discussed in § 4. (That plasticity term is actually used to study the change of surface 

topography in real time as the roller and the toroidal disk are kept engaged and 

rotating.) The roughness of each surface is considered as the distance of a surface 

point from a mean surface, the latter being the surface of the ellipsoid used to 

approximate the real surface at the area of the contact. Asperities have negative 

roughness whereas cavities have positive roughness, in the sense that asperities result 

in thinner films than when using a perfect ellipsoidal surface and, correspondingly, 

cavities result in thicker films. The CVT model in this report allows for real rough 2-d 

surface data to be used in the calculations. 

 The transient normal elastic displacements of the surfaces, owing to the 

pressure and traction distribution in the contact, are given by 
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where the first fraction inside the above double integral accounts for the contribution 

of the normal pressure (p) to the normal displacements and the second fraction 

accounts for the contribution of the surface tractions ( zyzx  , ). 

 The disadvantage of using equation (3.48) directly is the discontinuity of the 

integrated function at points (x = , y = ), as well as the amount of CPU time needed 

to accurately evaluate the double integral (a process that must be repeated for, usually, 

hundreds or thousands of grid points at every time step and/or correction loop of a 

computation algorithm). Therefore, instead of numerically evaluating the double 

integral of equation (3.48), a much faster method is followed. Each surface is 

analysed in a number of elemental rectangles of dimensions 2·x and 2·y. The 

normal elastic surface displacement at point (x,y) of a semi-infinite solid subjected to 

a pressure p at point (x0,y0) is (see for example Johnson, 1985, equation (3.22b)): 
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where E is the elastic modulus of the solid. The elastic surface displacement at a point 

(x,y) due to a uniform pressure over a rectangular area 2·x×2·y is then 
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Performing the integration in equation (3.50) yields the following result: 
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Equation (3.51) is extremely useful for computer programming by taking x = i·x and 

y = j·y. The surface normal displacement is then calculated through the use of 

influence coefficients Cijmn (using tensor notation) as 

 

   jinmpCu

m n

mnijmnz ,, ,                                                                      (3.52) 

 

The influence coefficients are calculated only once and this saves an enormous 

amount of computing time. 

 Most engineering analyses stop at this point, i.e. the surface displacements are 

considered to be the result of the normal pressure p only. However, in heavily loaded 

contacts and especially contacts with (sometimes) a significant proportion of asperity 

interactions as in the case of a CVT, surface normal displacements are also affected 

by traction, be it elastohydrodynamically derived or of a solid-contact origin (asperity 

friction). For the sake of completeness, this influence must be accounted for. The 

author could not find an equation similar to (3.51) and, therefore, undertook the 

laborious task to produce one in the same manner that equation (3.51) was earlier 

proved. After a lot of algebraic work, the normal elastic surface displacement due a 

uniform traction zx  over a rectangular area 2·x×2·y is calculated as follows: 
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Similarly, using a uniform traction zy , the result is: 

 

     

 

 

 
   
   

 
   
    
































































































































































































2 2 

2 2 

2 2 

2 2 

ln

ln

2

1

arctanarctan

arctanarctan

2

112

yyxx

yyxx
xx

yyxx

yyxx
xx

yy

xx

yy

xx
yy

yy

xx

yy

xx
yy

E
u zyz

zy 




  (3.54) 

 

 Finally, the transient normal elastic displacements of the surfaces, owing to the 

pressure and traction distribution in the contact, are calculated by superposition of the 

individual displacements for both solids (roller and toroidal disk of the CVT): 
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 The film thickness equation can now be written as 
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where the reference point for the surface displacements is the centre of the contact. 

Note that any plastic displacements (usually due to local asperity collisions) have 

already been included in the roughness term  (see equation (3.47)).

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



§ 3.8 Boundary and other conditions  37 

3.8 Boundary and other conditions 

 The zero-slip boundary condition was introduced in equations (3.5), i.e. the fluid 

velocities at the fluid-solid interface are the tangential velocities of the 

counterfaces (roller and toroidal disk). 

 It is assumed that the fluid pressure cannot become negative: 

 

0),,( tyxp                                                                                                      (3.57) 

 

Therefore, whenever a fluid pressure is calculated negative, it is set equal to zero. 

 It is assumed that the contact operates in an environment without structural 

vibrations. Therefore, the supported load in the contact must be equal to the load 

that has to be transmitted (P): 
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Pressure p in equation (3.58) includes of course both fluid and, if any, solid 

pressure. 

 At the areas of solid contact (if any), the shear stress is the product of the pressure 

and the boundary lubrication friction coefficient  (usually  = 0.06) 
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 It is known that yield occurs when the surface pressure exceeds a limit of 

(approximately) 1.6·Y, where Y is the yield stress in simple tension. If the 

calculated pressure at any point exceeds this plasticity limit, then that pressure is 

set equal to the plasticity limit: 

 

      YtyxpYtyxp  6.1,,    then6.1,, If newcalculated                                  (3.60) 
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4. Stress analysis 

 

 The typical contact in a TOROTRAK IVT variator is elliptical. The contact 

surface loading between a roller and a toroidal disk consists of normal pressure (p) 

and 2-dimensional surface tractions ( zyzx  , ). Moreover, there may be thermal 

stresses due to roughness asperity collisions that produce frictional heat, as well as 

lubricant shear heating that results in heat being transferred to the cooperating 

surfaces, but these effects are not accounted for in the present study (a full 

thermoelastic analysis can be found in Nikas et al., 1999). Based on the particular 

surface loading zyzxp  ,, , the subsurface stress field in the roller and the toroidal 

disk can be calculated. To achieve this goal, the Boussinesq-Cerruti equations must be 

applied. These are the most general equations available and can be found in 

differential form in Johnson (1985). In order to be used in the calculations, the 

equations are further developed into more useful analytical relations. This task was 

undertaken by the author in his Doctoral thesis. Only the basic equations will be 

presented here. 

 The dimensions of a typical CVT contact are sufficiently small, compared 

with the main dimensions of the cooperating bodies (roller and toroidal disk), which 

justifies the consideration of the roller and the disk as two elastic half-spaces. 

Assuming surface A is one of two half-spaces, figure 4.1 shows surface A together 

with the coordinate system notation as well as the surface pressure and tractions,  

which comprise the boundary loading.  

 

 

 

 

Figure 4.1 Boundary loading (pressure and tractions). 
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 Following Johnson (1985), the subsurface stresses are given by the following 

equations: 
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where G is the shear modulus of elasticity. The displacements are given by the 

following equations: 
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where 
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The rest of the stress analysis is part of the author’s Doctoral thesis (Nikas, 1999, 

chapter 4) and will not be repeated here. What is done essentially is to apply 

numerical integration of the surface pressure and tractions over the contact and then 

calculate the subsurface stresses from equations (4.1)-(4.6). 
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 This is by far the most time-consuming process of the CVT model. The 

numerical integrations require a large number (thousands) of integration nodes to 

achieve acceptable accuracy. Using a 266 MHz personal computer, these calculations 

can easily consume several days of CPU time, even for low grid resolutions. This is 

particularly problematic in rough (asperity) contacts (as is case in the TOROTRAK 

IVT), because the number of grid points required must be sufficiently large to account 

for the stress effect of roughness on the near surface layers, which is of importance in 

the CVT life calculations. 

 The previous analysis covers the case of elastic stresses and displacements. 

However, allowance was made for localised (asperity) plastic deformations, by using 

the term Dp in equation (3.47). It has already been mentioned (see the last of the 

boundary conditions in § 3.8) that when the calculated surface pressure at a point 

exceeds a plasticity limit, then the surface at the close vicinity of the aforementioned 

point resides to allow a pressure relief, until the pressure is reduced to the level of the 

plasticity limit. The plastically displaced material is assumed to be accommodated 

below the surface, without any significant change of the macroscopic dimensions of 

the solid body. This can be visualised by thinking of a roughness asperity being 

pressed into the surface, like a nail enters a wooden board. In reality, material around 

the asperity will be slightly raised to allow for the accommodation of part of the 

asperity under the surface (like the raised shoulders of a sharp debris dent), but such 

effects are considered having insignificant influence on the overall stress analysis and, 

correspondingly, fatigue life calculations, providing that they are localised (isolated 

events). If the latter is not true, the contact is definitely in a state of gross plastic 

damage (scuffing), which arguably cancels the necessity for any further stress 

analysis. 

 

 

 

 

 

 

 

 

 



§ 5. Fatigue life equation  42 

5. Fatigue life equation 

 

 The fatigue life model used extensively in the literature is the Ioannides-Harris 

(1985) model, which is an extension of the original (1947) Lundberg-Palmgren (L-P) 

model. The Ioannides-Harris (I-H) model uses an endurance limit, below which 

fatigue will not occur. Any subsurface stresses that are greater (in absolute value) than 

the endurance limit, do not contribute to the risk of fatigue. Additionally, the I-H 

model spreads the fatigue life calculations to elemental volumes of material, whereas 

the L-P model considers the studied body as one entity. The I-H model reads as 

follows: 

 

 
 

















RV

h

c

ue dV
z

NA
S

 

1
ln


                                                                           (5.1) 

 

where S is the probability of survival (0 < S < 1) after N millions of stress cycles, A is 

an experimentally derived proportionality constant, e´ is the life exponent constant 

(Weibull slope, usually e´ = 1.1-1.5),  stands for subsurface stress (in N/mm
2
 or 

MPa), u is the endurance limit (in N/mm
2
 or MPa, u  0), z´ is a stress-weighted 

average depth (in mm), c is the stress criterion exponent (for bearings c = 31/3), h´ is 

the depth exponent (typical h´ = 2.3), and VR is the risk volume of material where || > 

u (in mm
3
). 

 The proportionality constant A can be calculated if one experimental point (0 

, Lxx) is known, where Lxx is the fatigue life that xx % (e.g. 10 %) of a batch of 

components will endure (i.e., xx % of components will endure Lxx millions of stress 

cycles, when  in the integral of equation (5.1) is set equal to 0). Moreover, Lubrecht 

et al. (1990) argue that the depth exponent h´ can be set equal to zero, especially in 

rough/asperity contacts, thus eliminating the term of the average depth z´ from the 

fatigue life equation (5.1). This route is followed in the current CVT model. 

Therefore: 
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What is usually of importance in these calculations is the L10 (S = 0.9) or L50 (S = 0.5) 

life. 

 Rearranging equation (5.2), the fatigue life and the probability of survival are 

given by the following equations: 
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 There is a number of fatigue-stress criteria used in the literature, but two of 

them are the most widely used: the Deformation Energy (von Mises) criterion and the 

Maximum Shear Stress criterion. Both of these two criteria are used in the CVT 

model. 

 

 

 

5.1 Deformation Energy (von Mises) fatigue-stress criterion 

 According to this criterion, the equivalent stress  to be used in the fatigue life 

equation is given as 
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This criterion is simple and uses all six components of the stress tensor to calculate 

the equivalent stress. 

 

 



§ 5.2 Maximum Shear Stress criterion  44 

5.2 Maximum Shear Stress criterion 

 According to this criterion, the equivalent stress  to be used in the fatigue life 

equation is the maximum shear stress, corrected by the hydrostatic stress. Before 

giving the equation, which defines the equivalent stress , some auxiliary variables 

must be defined first. 

 The three stress invariants are: 
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The following auxiliary variables C1, C2 and C3 are now defined: 
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The three principal stresses 1, 2, 3 are calculated as follows: 
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 The equivalent stress  can now be calculated as follows: 
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where max is the maximum shear stress (equal to the difference of the maximum and 

the minimum principal stress, divided by 2) and pH is the hydrostatic pressure 

(pH = J1/3). 

 Moreover, the endurance limit u in this criterion is defined as follows: 
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6. Contact fatigue – comparison of rolling bearings and CVTs 

 

 Rolling bearings’ purpose is to offer load support, transferring load between 

the bearing rings through the bearing rolling elements. The contact between a rolling 

element and a ring is of the rolling type, with very limited amounts of sliding (hence 

the name rolling bearings). CVTs on the other side, essentially transmit power 

between two disks and usually work with substantial amounts of sliding. When it 

comes to fatigue life calculations, there are some basic differences between rolling 

bearings and CVTs. Here follows a list of some important differences. 

(a) A rolling bearing contact is mainly under normal pressure. A CVT contact is 

mainly under a combination of normal pressure and traction (shear). The normal 

pressure in rolling bearings can be quite higher than in CVTs (e.g. 4-5 GPa for 

rolling bearings versus 1-2 GPa for CVTs). 

(b) The surface quality of rolling bearings is usually of very high standards. CVTs 

have usually worse surface finish (rougher contact surface). 

(c) As a result of (b), CVTs often work at very low -ratio (the ratio of the minimum 

film thickness to the composite RMS surface roughness), with a large amount of 

asperity interactions, when this kind of interaction is very limited in high quality 

rolling bearings. 

(d) As a result of (c), CVT contacts often exhibit a large proportion of local asperity 

plastic deformations. As a matter of fact, the roughness asperities often carry a 

significant portion of the supported load, when in rolling bearings, it is the 

lubricant film that supports almost all of the load. 

(e) Following (c) and (d) (roughness asperity interactions in CVTs), the stressing of a 

typical CVT contact exhibits a lot of solid shearing, besides the usual fluid 

internal shearing. Friction among colliding asperities brings the high-risk 

subsurface shear stress zone closer to the surface, which can be realised if the 

contact between two asperities is visualised as a micro-Hertzian contact. 

Moreover, asperity collisions result in local frictional heating and, hence, the 

development of thermal stresses. As is explained in § 2.2, thermal stresses 

originating from surface frictional heating have their highest strength on the very 

top layers below the surface. Such transient and localised thermal stress fields 

below colliding asperities are combined with the elastoplastic normal and, 

especially, shear stress fields. The result is a zone of high risk of fatigue very close 
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to the surface. In contrast, the high-risk stress zone in rolling bearing contacts lies 

much deeper below the surface, as is normally predicted by the Hertzian theory of 

elastic contact. 

(f) Contact fatigue is normally associated with spalling, i.e. when a piece of material 

breaks away from the surface. Spalling is divided into two phases: crack initiation 

and crack propagation. In rolling bearings of high quality surface finish, the phase 

of crack initiation is far longer than the phase of crack propagation. This 

observation is indeed addressed in the development of the Ioannides-Harris (1985) 

fatigue life model. Once initiated, a crack usually propagates rapidly in rolling 

bearings because of the high level of loading that bearings tolerate. This macro-

spall formation is characteristic of the classical rolling contact fatigue. In the case 

of CVTs (traction drives) however, the high levels of traction and often asperity 

thermoelastoplastic interaction events can result in a different form of contact 

fatigue, which is surface initiated. Instead of distinctive macro-spalling, it is 

common to observe micro-pitting, which, when viewed with naked eye, has a 

grey/matt appearance. This form of fatigue has not been clearly understood, but it 

can be speculated that a possible explanation lies in the asperity-interaction 

hypothesis. Following a previous work (Nikas, 1999), the author believes that 

asperity flash temperatures (which are often calculated to be very high, e.g. over 

1000 C) can play a significant role in the initiation of thermo-cracks, which, as 

explained earlier, originate from the surface. Once initiated, these fine surface 

cracks can propagate rapidly, especially in lubricated contacts where it is widely 

speculated that the highly pressurised lubricant enters the cracks and opens them 

up by means of its hydraulic pressure. 

(g) As is explained in (f), contact fatigue in rolling bearings is normally initiated at 

the deep subsurface shear stress zone, as predicted by the classical Hertzian 

theory. The cracks then reach the surface and result in spalling. In CVTs, contact 

fatigue normally initiates from the surface. Fine micro-cracks propagate 

downwards, until they meet the deep subsurface shear stress zone. In their 

journey, CVT contact micro-cracks have to pass through a relatively stress-free 

zone, named quiescent zone, before they reach the deep subsurface shear stress 

zone. If there are steel inclusions in this quiescent zone, they may act as stress 

raisers, assisting in the propagation of the surface micro-cracks. The cleanliness of 
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steel will, therefore, play a role in the contact fatigue life. This is not an issue with 

modern rolling bearings, where the steel used is usually of the highest quality 

(without inclusions). For CVTs however, steel cleanliness may be more of an 

issue and must be given attention if long fatigue lives are to be achieved. 

(h) As is explained in § 2.1, lubricant thermal effects play an important role in the 

lubrication and traction capacity of CVTs. Because of the high shearing of the 

lubricant in typical CVT contacts, the lubricant is internally heated to such an 

extend that its dynamic viscosity is reduced. This reduction counteracts the 

viscosity increase that follows the substantial compression of the lubricant in the 

high-pressure central zone of a contact. Typical lubricant temperature increase due 

to (mainly) shearing in a sliding contact is between 50-100 C. If such a 

temperature increase is combined with the normal operation (bulk) temperature of 

the lubricant (which, in the case of TOROTRAK’s IVT could be more than 100 

C), the overall local lubricant temperature could easily exceed 150-200 C. This 

is above the lubricant-film strength (desorption or melting point), even when 

lubricants with special EP additives are used (maximum strength of about 150 

C). As a result, the lubricant in a CVT contact may experience local melting and 

lose its protective power. This is not an issue in rolling bearings, which operate 

with very limited sliding and, hence, do not experience substantial lubricant 

frictional heating. 

(i) A rolling bearing usually operates under less transient conditions than a CVT. For 

example, the rapid accelerations and changes of the transmitted power are quite 

common in CVT contacts, whereas these events are more rare in rolling bearings. 

It is explained in § 2.5 that such transient phenomena can have detrimental effects 

on the lubrication (film thinning or collapse) and, consequently, the fatigue life of 

the cooperating components. In rolling bearings this is known as “smearing”.
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7. Examples 

 

 Several example cases are analysed in this section in order to show the 

application of the developed model and accompanying computer program. The 

differences among the various cases are chosen in a way to show the effect of 

important parameters, as are the contact load, sliding speed and surface roughness, on 

the lubrication, stressing and fatigue life of the contact. 

 Two surface roughness textures were used in the examples. The first 

represents a real example and was measured by a Talysurf device in TOROTRAK. 

The measurements were performed on the surface of a roller and figure 7.1 shows a 

flattened portion of the surface, with dimensions 8 mm × 4 mm. 

 

 

 

 

Figure 7.1  Portion of the roller’s working surface (RMS  1.45 m, Rmax  13.2 m). 

 

 

For the surface shown in figure 7.1, RMS  1.45 m. Also, the maximum asperity 

height is 3.5 m and the maximum valley depth is 9.7 m. The RMS value is quite 
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high because the large valley shown in the figure is taken into accounted. If the valley 

is ignored, the RMS roughness value would be around 0.2-0.3 m. 

 Due to lack of roughness data for the cooperating surface of the toroidal disk, 

an artificially created, random roughness was assumed, with an RMS value of 0.26 

m (according to TOROTRAK, the RMS range for the roller and disk is 0.13-0.23 

m). The peak asperity of that artificial surface and the deepest valley have the same 

height, namely 0.45 m. Figure 7.2 shows a portion of the artificially created disk 

surface. 

 

 

 

 

Figure 7.2 Artificially created random surface (RMS  0.26 m, Rmax  0.9 m). 

 

 

  Table 7.1 lists the data that are common for all examples and figure 7.3 shows 

the main components of the variator and their basic dimensions. 
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Table 7.1 

Data used in all examples 

Lubricant (traction fluid) Santotrac 50 

“Height” of the variator, H (see figure 7.3) 55 mm 

“Radius” of the variator, r (see figure 7.3) 50 mm 

Radius of curvature of the roller, (roller)

xr  50 mm 

Radius of curvature of the roller, (roller)

yr  30 mm 

Working angle,  (see figure 7.3) 10 (close to maximum torque) 

Moduli of elasticity, Eroller, Edisk 207 GPa 

Poisson ratios, roller, disk 0.3 

Density-pressure-temperature equation (3.36) 

constants, c1, c2, c3 

c1 = 6·10
-10

 Pa
-1

, c2 = 17·10
-10

 Pa
-

1
, c3 = 65·10

-5
 C

-1
 

Ambient density of the lubricant, 0 870 kg/m
3
 (estimation) 

Viscosity-pressure-temperature equation used Barus (equation (3.23)) 

Lubricant limiting-shear-stress equation (3.35) 

constants, 0, ,  

0 = 317·10
5
 Pa,  = 0.093, 

 = 317000 Pa/C 

Tangential speed of the roller in y axis, vroller zero 

Tangential speed of the toroidal disk in y axis, vdisk zero 

Rheological model used Bair-Winer (see § 3.2.2) 

 

 

 

Figure 7.3 Basic dimensions of the variator. 

roller 

Toroidal disks 

H 

 

r 
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 The effective radii of curvature Rx and Ry (see equations (3.37)) can be 

calculated from the data given in table 7.1, namely the radii of curvature of the roller, 

the working angle , the radius of the variator r, and the height of the variator H: 
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Changes of the working angle  during the operation of the variator result in changes 

of Rx according to equations (7.1) and this is taken into account in the solution of the 

(transient) lubrication equation developed for this model (equation (3.20)). 

The radii of curvature of the toroidal disks are given by 
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Based on the data given in table 7.1, the radii of curvature of the toroidal disks are 

mm 367(disk) xr  and mm 50(disk) yr . 

 Table 7.2 shows a parametric study for test-cases similar to those encountered 

in a TOROTRAK IVT, covering low and high loads, low and higher operating oil 

temperatures, and low and higher sliding conditions. These cases represent examples 

where there is no roughness-asperity interaction (according to the calculated results). 

All results have been obtained from the computer program created for this project. 

 The results of table 7.2 were obtained using a grid of 100100 nodes covering 

an area –1.6·Dx  x  1.6·Dx  and  –1.6·Dy  y  1.6·Dy  (this is the same as choosing 

the 5050 resolution for the EHL solution in the computer program). This resolution 

is not sufficient for an accurate addressing of rough surfaces but helps obtain results 

quickly. Therefore, the results of table 7.2 must be interpreted in relation to each other 

rather than as absolute figures. 
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Table 7.2 

Parametric study – Cases with no roughness asperity interactions 

Randomly rough surfaces (figure 7.2). 

EHL grids: 100100 (denoted 5050 in the computer program), 

 covering  –1.6·Dx  x  1.6·Dx  and  –1.6·Dy  y  1.6·Dy 

Data (see also table 7.1) 

P, 0, (uroller, udisk) 

hmin 

[m] 

 roller disk p0 

[GPa] 

   3 kN, 60 C, (10, 8) m/s 1.02 2.8 0.082 0.079 1.35 

   3 kN, 60 C, (10, 9.7) m/s 0.80 2.2 0.082 0.079 1.35 

   3 kN, 80 C, (10, 8) m/s 0.70 1.9 0.077 0.075 1.35 

   3 kN, 80 C, (10, 9.7) m/s 0.76 2.1 0.077 0.074 1.35 

   3 kN, 100 C, (10, 8) m/s 0.71 1.9 0.074 0.070 1.35 

   3 kN, 100 C, (10, 9.7) m/s 0.70 1.9 0.073 0.069 1.35 

   6 kN, 60 C, (10, 8) m/s 1.55 4.2 0.078 0.074 1.70 

   6 kN, 60 C, (10, 9.7) m/s 1.64 4.5 0.077 0.074 1.70 

   6 kN, 80 C, (10, 8) m/s 1.53 4.2 0.082 0.079 1.70 

   6 kN, 80 C, (10, 9.7) m/s 1.32 3.6 0.081 0.077 1.70 

   6 kN, 100 C, (10, 8) m/s 0.86 2.3 0.080 0.076 1.70 

   6 kN, 100 C, (10, 9.7) m/s 1.12 3.0 0.080 0.074 1.70 

   10 kN, 60 C, (10, 8) m/s 1.57 4.3 0.085 0.083 2.01 

   10 kN, 60 C, (10, 9.7) m/s 3.42 9.3 0.082 0.079 2.01 

   10 kN, 80 C, (10, 8) m/s 1.10 3.0 0.082 0.079 2.01 

   10 kN, 80 C, (10, 9.7) m/s 1.64 4.5 0.079 0.075 2.01 

   10 kN, 100 C, (10, 8) m/s 0.15 0.4 0.080 0.077 2.01 

   10 kN, 100 C, (10, 9.7) m/s 0.43 1.2 0.080 0.077 2.01 

   20 kN, 100 C, (10, 8) m/s 
* 

2.62 7.1 0.086 0.083 2.54 

 

* 
Some roughness asperities for this case were plastically deformed, which explains the    

increased film thickness. 

 

 By studying the figures of table 7.2, the following conclusions are drawn. 
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1. The effect of load on the minimum film thickness is not clear because of the 

flattening of individual asperities, which could even be plastically deformed (see 

last case) by the fluid pressure. Increased load could result in thicker minimum 

film thickness. 

2. The minimum film thickness for almost all cases is sufficient to allow for 

unproblematic operation. This is also reflected on the calculated lambda ratios. 

However, these results are for steady-state operation. Transient events like a load 

or speed change could cause film thinning. 

3. The operating temperature of the lubricant affects the results rather significantly. 

Increased temperatures result in thinner films and this is clear by comparing the 

results for 60 C, 80 C and 100 C. This effect is of course very well known and 

it is important to see it quantified in a realistic study. The conclusion is that high 

temperatures must be avoided by cooling the lubricant to an acceptable level (for 

example, down to 60 C). 

4. The operating temperature also affects the effective traction coefficients. Higher 

temperatures result in slightly lower traction coefficients, which, when ignoring 

lubricant thermal effects, is a consequence of the limiting shear stress of the 

lubricant being reached for lower pressure (see equation (3.35)). 

5. Local thermal effects have been ignored; if accounted for, the minimum film 

thickness is expected to be reduced. This may result in asperities coming into solid 

contact. 

6. The calculated traction coefficients are in the range experimentally found for such 

cases. The inclusion of lubricant thermal effects in the model would reduce the 

effective traction coefficients but, generally, the calculated traction is considered 

realistic. 

7. The results are related to the specific roughness texture used (figure 7.2). This will 

be made clear when studying the results shown in table 7.3, which refer to 

different roughness textures. 

 

 In order to make the results more related to a real TOROTRAK IVT example, 

table 7.3 presents cases where the roller’s working surface is that shown in figure 7.1 

(real TOROTRAK example). The disk’s working surface is again that shown in figure 
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7.2, i.e. randomly created roughness with parameters (RMS, Rmax etc) similar to those 

normally found in a TOROTRAK IVT. 

 

Table 7.3 

Parametric study – Most cases with roughness asperity interactions 

Roller surface as in figure 7.1 (real case), disk surface as in figure 7.2 (artificial). 

EHL grids: 100100 (denoted 5050 in the computer program), 

 covering  –1.6·Dx  x  1.6·Dx  and  –1.6·Dy  y  1.6·Dy 

Data (see also table 7.1) 

P, 0, (uroller, udisk) 

hmin 

[m] 

 roller disk p0 

[GPa] 

Ps/P 

[%] 

   3 kN, 60 C, (10, 8) m/s 0 0 0.062 0.062 1.35 81 

   3 kN, 60 C, (10, 9.7) m/s 0 0 0.073 0.072 1.35 11 

   3 kN, 80 C, (10, 8) m/s 0 0 0.053 0.053 1.35 24 

   3 kN, 80 C, (10, 9.7) m/s 0 0 0.073 0.072 1.35 1 

   3 kN, 100 C, (10, 8) m/s 0 0 0.038 0.038 1.35 1 

   3 kN, 100 C, (10, 9.7) m/s 0 0 0.049 0.049 1.35 42 

   6 kN, 60 C, (10, 8) m/s 0 0 0.083 0.082 1.70 2 

   6 kN, 60 C, (10, 9.7) m/s 0 0 0.087 0.085 1.70 2 

   6 kN, 80 C, (10, 8) m/s 0.66 0.4 0.062 0.061 1.70 0 

   6 kN, 80 C, (10, 9.7) m/s 0.25 0.2 0.066 0.066 1.70 0 

   6 kN, 100 C, (10, 8) m/s 0 0 0.057 0.056 1.70 11 

   6 kN, 100 C, (10, 9.7) m/s 0 0 0.075 0.075 1.70 7 

   10 kN, 60 C, (10, 8) m/s 0 0 0.091 0.089 2.01 5 

   10 kN, 60 C, (10, 9.7) m/s 0 0 0.091 0.089 2.01 4 

   10 kN, 80 C, (10, 8) m/s 0 0 0.086 0.084 2.01 7 

   10 kN, 80 C, (10, 9.7) m/s 0 0 0.086 0.084 2.01 7 

   10 kN, 100 C, (10, 8) m/s 0 0 0.081 0.080 2.01 8 

   10 kN, 100 C, (10, 9.7) m/s 0 0 0.081 0.080 2.01 8 

   20 kN, 100 C, (10, 8) m/s 
* 

0 0 0.085 0.084 2.54 2 
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The last column in table 7.3 shows the load supported by solid contact (Ps) as a 

percentage of the total supported load (P). Using the results presented in table 7.3, the 

following conclusions are drawn. 

1. Roughness asperities can carry a significant proportion of the transmitted load. 

2. The traction during asperity interactions can be much less than the traction 

anticipated when the surfaces are considered smooth. The level of traction during 

solid contact depends on the friction coefficient for boundary lubrication, which 

can be lower than the effective traction coefficient during extensive squeeze 

(without collapse) of lubricant films. If there is a large number of asperities in 

contact, the overall traction coefficient is ruled by the boundary-lubrication 

friction coefficient. From this perspective, the accurate estimation of the boundary 

friction coefficient is vital in the derivation of accurate traction results. Moreover, 

there may be large areas of solid contact that don’t carry a substantial load 

(because the load is concentrated in other areas) and, hence, areas that don’t 

contribute to the overall traction in the contact. The latter causes a reduction of the 

calculated overall traction coefficient. 

3. In cases of asperity interactions, any traction results will have a degree of 

inaccuracy if thermoelastic expansion of colliding and frictionally heated 

asperities is ignored. Such events need to be accounted for if more accurate 

predictions are of importance. 

4. The operating temperature of the lubricant affects the traction coefficients 

sometimes substantially. The traction is reduced when the lubricant temperature is 

increased. 

5. It is not recommended to compare the results of table 7.3 with each other 

(compare the different cases) or with those of table 7.2, because each case refers 

to a different portion of the surfaces and, hence, different roughness profiles. The 

area of study on a surface is chosen randomly by the computer program.
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7.1 An example with extensive asperity interactions 

 A specific example is presented next, in order to show the pressure, film 

thickness and shear stress (traction) distributions in a rough contact. This example is 

the first test case presented in table 7.3 (P = 3 kN, 0 = 60 C, uroller = 10 m/s, udisk = 8 

m/s). For this case there is substantial asperity interaction, with 81 % of the 

transmitted load being supported through solid contact. The maximum Hertzian 

pressure is 1.35 GPa. Figure 7.4 shows the calculated pressure distribution in the 

contact. 

 

Area of plastic
 deformation

 

 

Figure 7.4 Pressure distribution for the first case in table 7.3. 

 

 

According to figure 7.4, there is an area of plastic deformation at an area of solid 

contact. The pressure distribution is irregular because of the surface roughness and 

there are areas of very high pressure that carry most of the load. 

 Figure 7.5 shows a contour map of the film thickness in the contact. Red areas 

indicate solid contact and it is obvious that there is extensive asperity interaction that 

creates isolated patches of intimate asperities. 
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Figure 7.5 Contour map of the film thickness for the first case in table 7.3. 

 

 

Next, figures 7.6 and 7.7 show maps of the traction (surface shear stress) in the 

contact. These maps reveal the distribution of traction and the areas that transmit most 

of the torque between the roller and the toroidal disk. The latter areas are not 

necessarily regions of solid contact but also areas of high lubricant pressure that 

approach or reach the limiting shear stress of the traction fluid. It must be noted that 

due to the redistribution of the shear stress vector in areas where the limiting shear 

strength of the lubricant has been reached in the direction of sliding (see § 3.4), there 

is a (very) limited amount of traction along the y-axis, where there is no sliding or 

rolling and where, normally, there wouldn’t be expected any lateral force. However, 

this is usually very small to be detected (maximum shear stress of about 6 MPa but in 

opposite directions for y < 0 and y > 0, which gives a near-zero resultant shear stress 

along the y-axis). 
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Figure 7.6 Traction (shear stress) on the roller along the axis of sliding (x). 
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Figure 7.7 Traction over limiting shear stress on the roller along the axis of  

  sliding (x). 
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Table 7.4 summarises the data and results for the presented example. 

 

            Table 7.4 

Test case 

Roller surface as in figure 7.1 (real case), disk surface as in figure 7.2 (artificial). 

Data: P = 3 kN, 0 = 60 C, uroller = 10 m/s, udisk = 8 m/s, other data as in table 7.1. 

EHL grids: 100100 (denoted 5050 in the computer program), 

 covering  –1.6·Dx  x  1.6·Dx  and  –1.6·Dy  y  1.6·Dy 

Length of the contact-ellipse semi-axis x, Dx 850 m 

Length of the contact-ellipse semi-axis y, Dy 1251 m 

Minimum film thickness, hmin 0 m (solid contact) 

Lambda ratio,  0 

Asperity interactions Yes, extensive. 

Maximum Hertzian pressure, p0 1.35 GPa 

Maximum calculated pressure, p 4.44 GPa (local yield) 

Average contact pressure, 
yx DD

P


 898 MPa 

Effective traction coefficient of the roller, roller 0.062 

Effective traction coefficient of the toroidal disk, disk 0.062 

Traction force on the roller on the axis of sliding x, roller·P 186 N 

Traction force on the disk on the axis of sliding x, disk·P 186 N 

Average traction on the roller on the axis of sliding x, 

yx DD

P







roller  
56 MPa 

Average traction on the toroidal disk on the axis of sliding x, 

yx DD

P







disk  
56 MPa 

Torque on the roller on the axis of sliding x (traction force × r) 186 N × 0.050 m = 9.3 N·m 
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7.2 An example of the subsurface stress fields 

 This section is devoted to the presentation of the subsurface stress fields as 

they are calculated by the computer program of this project (see also § 4). The test 

case, a calculated pressure distribution for a rough contact without asperity 

interactions (and thus full film separation), is shown in figure 7.8.  

 

 

 

Figure 7.8      Example of pressure distribution (p0 = 1.60 GPa, pmax = 2.62 GPa). 

 

 

The calculated elastohydrodynamic tractions are shown in figures 7.9 and 7.10. 
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Figure 7.9 Surface traction (roller)

zx . 

 

 

 

 

Figure 7.10 Surface traction (roller)

zy . 

 

 Following figures 7.8-7.10, figures 7.11-7.16 show the distribution of all six 

components of the stress tensor, at a depth of 8 m below the surface. 
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Roller, 8 m below the surface

 

 

Figure 7.11 Distribution of normal stress xx  at z = 8 m. 

 

 

 

 

 

Roller, 8 m below the surface

 

 

Figure 7.12 Distribution of normal stress yy  at z = 8 m. 
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Roller, 8 m below the surface

 

 

Figure 7.13 Distribution of normal stress zz  at z = 8 m. 

 

 

 

 

 

Roller, 8 m below the surface

 

 

Figure 7.14 Distribution of shear stress xy  at z = 8 m. 
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Roller, 8
 m below th

e surfa
ce

 

 

Figure 7.15 Distribution of shear stress yz  at z = 8 m. 

 

 

 

 

 

Roller, 8
 m below th

e surfa
ce

 

 

Figure 7.16 Distribution of shear stress zx  at z = 8 m.
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8. Discussion and suggestions 

 

 This section summarises the work done and gives suggestions to build an 

efficient test rig for experimenting on the operation of the main IVT variator 

components, namely the roller and the toroidal disk. It also provides hints on future 

work needed to complete the theoretical analysis and improve the present model. 

 The theoretical work carried out during this 18-month project covered the 

lubrication, loading and life expectancy aspects of the rollers and toroidal disks of a 

TOROTRAK IVT variator. The lubrication problem was modelled by means of a 

generalised Reynolds equation (§ 3.1) for transient, non-Newtonian analysis of rough, 

elliptical contacts, excluding lubricant thermal effects. The problem was attacked 

from a general point of view, including roughness asperity interactions (solid contact) 

in the analysis (but excluding a possible thermal displacement of rubbing asperities) 

in combination with the normal full-film-separation analysis. This way, the pressure 

and traction in the contact are calculated. Through this, the surface loading of the 

contact is established, which is then used to calculate the subsurface stress fields 

through a 3-dimensional analysis (§ 4). Finally, the subsurface stress results are used 

to calculate the life expectancy of the rollers and disks, based on the Ioannides-Harris 

fatigue life model (§ 5), with a choice of two suitable fatigue criteria (§ 5.1, 5.2). 

 Based on the examples analysed in § 7, it is seen that various factors can affect 

the operation of the examined contact. These factors are listed next. 

 The lubricant operating temperature. It is shown and discussed in § 7 that the 

lubricant operating temperature plays an important role in the effective lubrication 

of the contact. According to TOROTRAK, the lubricant operating temperature is 

normally quite high, often 80 – 120 C. Bulk temperatures over 100 C are 

excessive, because they are associated with film thinning or collapse, depending 

on the roughness texture of the cooperating surfaces. It must be realised that these 

temperatures must be added to the local lubricant or solid temperatures in the 

contact, arising from frictional heating of the lubricant and/or roughness 

asperities. Lubricant frictional heating can give flash temperatures of around 50 -

100 C, and asperity frictional heating (which is much more localised) can result 

in flash temperatures of 1000 C or more! Moreover, lower lubricant operating 

temperature satisfies the traction demands of the contact obviously better than 

higher temperature (see also table 7.2). 
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 Therefore, it is suggested that a proper cooling system be used that will feed 

the variator with sufficiently cool oil. The level of cooling can be determined by 

using the computer program of this project and calculate the film thickness and 

traction forces of particular cases; there are obviously other factors that must be 

accounted for (for example cost, feasibility, increased weight, design 

complications etc). In general, a lubricant operating temperature of around 80 C 

(or lower) is much more preferable than temperatures in excess of 100 C. 

 The “severity” of surface roughness (RMS). As was shown in tables 7.2 and 7.3, 

the surface roughness texture and RMS value are very important in avoiding solid 

contact (asperity collisions), which result in localised thermoelastoplastic loading 

of the contact and, generally, reduce the fatigue life. This conclusion has also been 

presented in the literature (see for example Ai, 1998). In general, higher RMS 

values (overly rougher surfaces or surfaces with large bumps or roughness 

asperities) are associated with increased asperity interaction and, thus, solid 

contact. 

 It is, therefore, suggested that the working-surface finish of the main variator 

components (rollers and disks) be of a high standard, with RMS values of 0.2 or 

lower. 

 Transient effects. Transient effects have been incorporated in the model and the 

accompanying computer program. It is known that, in a TOROTRAK variator, 

sudden changes of the transmitted load, the entraining speeds as well as changes 

of the working angle (angle  in figure 7.3) do occur during the normal operation 

of the IVT. Such changes are transient phenomena and it is known that they can 

result in film thinning or collapse. Moreover, it is assumed in the model that there 

are no structural vibrations and, hence, the supported load is always equal to the 

transmitted load (see equation (3.58)). If there are structural vibrations (caused, 

for example, by engine vibrations or irregular road surfaces on which an IVT-

equipped vehicle is driven), then the supported load is not equal to the load that 

has to be transmitted and their difference is equal to the difference in the inertial 

forces of the roller and the disk (i.e. there is a Newtonian acceleration term in the 

force equilibrium equation). This often means loss of film support that can be 

detected as noise (a similar phenomenon occurs during the dynamic loading of 

spur gears). 
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 It is, therefore, suggested that the variator be isolated from the rest of the 

vehicle or working environment with shock absorbing materials and that the 

rotating parts of the variator be adequately balanced to minimise oscillations. It is 

also suggested that the changes of the working angle of the variator be 

electronically controlled to avoid excessive accelerations, and to follow a 

maximum predetermined rate of acceleration (rate of change of the working 

angle). The latter could be determined by using the present model and program to 

simulate a working scenario and study the transient film thickness as a function of 

the rate of change of the working angle (this is straightforward to do with the 

program because the working angle and the corresponding time are direct inputs 

to the program). 

 The traction fluid limiting shear strength. For increased traction it is obviously 

important to use a traction fluid that has a high limiting shear strength (see also § 

3.3). Using the present model and computer program, it was confirmed that, 

normally, a significant portion of the roller-disk contact operates under the 

lubricant’s limiting shear stress. Traction results are thus very much dependent on 

the shear strength of the traction fluid. 

 

 The efficient design of a variator test rig must be based on the previous 

observations. More specifically: 

1. The rig must use real working components, namely rollers and disks from the 

current production line. The roughness of the components must be representative 

of the roughness (texture and RMS magnitude) normally encountered in the end 

product. 

2. The rig must have allowance to simulate a realistic operation scenario, i.e. a 

sequence of working angles, loads, and rotational speeds changes, that is 

considered representative of normal operation of the IVT. Predetermined speeds 

and loads that remain constant in time (i.e. a static rig), cannot yield reliable 

results and the fatigue lives may be overestimated. 

3. The rig must include a device to control the lubricant operating temperature. The 

effects of altering that temperature can then be studied. 

4. Although not of the highest priority (and definitely complex and expensive), it 

would be possible to measure vibrations of a foreign origin on the variator during 

normal operation (for example, when fitted on a moving vehicle) and then recreate 
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this external dynamic loading on the test rig. It could then be possible to see the 

effect of external vibrations on the effectiveness of lubrication and the fatigue 

lives of the main components, compared with the same values when operating in a 

vibration-free environment. 
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9. Computer program (“TORO.EXE”, version 1.0.0 beta) 

 

 One of the main targets of this project was the creation of a computer program 

to apply the developed model and use for quantified predictions. Such a program has 

indeed been created and some results can be seen in § 7. The code is written using the 

very latest FORTRAN language ANSI standard (FORTRAN 95) and compiled with 

the Lahey FORTRAN 95 compiler, version 5.5g with full optimisation. The input and 

output of the program involve several files, all of which are listed below. 

 It is noted that these files and their specific format are for version “1.0.0 beta” 

of the program. Future versions may use different formats. 

 

Input file:     tPfuv.DAT 

 This file must exist for the program to run. 

Column Variable Unit 

1 Time, t s 

2 Supported load, P N 

3 Working angle,  (see figure 7.3) deg () 

4 Entraining speed of the roller in x, uroller m/s 

5 Entraining speed of the toroidal disk in x, udisk m/s 

6 Entraining speed of the roller in y, vroller m/s 

7 Entraining speed of the toroidal disk in y, vdisk m/s 

 

 

Input file:     xyROUGH1.DAT (optional) 

 This optional file must contain the roughness data for the roller. 

 The first line of this file must have the spatial steps of the roughness 

data, namely x and y (both in meters). 

Column Variable Unit 

1 x (x  0, distance from an arbitrary reference point) m 

2 y (-ymax  y  ymax, i.e. symmetrical around zero) m 

3 Roughness of the roller,  yx,roller  m 
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Input file:     xyROUGH2.DAT (optional) 

 This optional file must contain the roughness data for the toroidal disk. 

 The first line of this file must have the spatial steps of the roughness 

data, namely x and y (both in meters). 

Column Variable Unit 

1 x (x  0, distance from an arbitrary reference point) m 

2 y (-ymax  y  ymax, i.e. symmetrical around zero) m 

3 Roughness of the toroidal disk,  yx,disk  m 

 

 

 

 

Output file:     TOROph.DAT 

 This file contains important results about the pressure, film thickness and the 

local traction coefficients. 

Column Variable Unit 

1 Time, t s 

2 x (x-distance from the centre of the contact) m 

3 y (y-distance from the centre of the contact) m 

4 Pressure,  tyxp ,,  Pa 

5 Film thickness,  tyxh ,,  m 

6 Hertzian pressure at (x,y,t) Pa 

7 Local traction coefficient for the roller,  tyx ,,roller   

8 Local traction coefficient for the toroidal disk,  tyx ,,disk   
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Output file:     TOROtxy1.DAT 

 This file contains traction results for the roller. 

Column Variable Unit 

1 Time, t s 

2 x (x-distance from the centre of the contact) m 

3 y (y-distance from the centre of the contact) m 

4 Traction on the roller in x,  tyxzx ,,(roller)  Pa 

5 Traction on the roller in y,  tyxzy ,,(roller)  Pa 

6 Resultant traction on the roller,    2 (roller)2 (roller)

zyzx    Pa 

7 

Traction on the roller in x, over the local limiting shear 

stress, 
 

 tyx

tyx

L

zx

,,

,,(roller)




 

 

8 

Traction on the roller in y, over the local limiting shear 

stress, 
 

 tyx

tyx

L

zy

,,

,,(roller)




 

 

9 

Resultant traction on the roller, over the local limiting 

shear stress, 
   

 tyxL

zyzx

,,

2 (roller)2 (roller)



 
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Output file:     TOROtxy2.DAT 

 This file contains traction results for the toroidal disk. 

Column Variable Unit 

1 Time, t s 

2 x (x-distance from the centre of the contact) m 

3 y (y-distance from the centre of the contact) m 

4 Traction on the toroidal disk in x,  tyxzx ,,(disk)  Pa 

5 Traction on the toroidal disk in y,  tyxzy ,,(disk)  Pa 

6 Resultant traction on the toroidal disk,    2 (disk)2 (disk)

zyzx    Pa 

7 

Traction on the toroidal disk in x, over the local limiting 

shear stress, 
 

 tyx

tyx

L

zx

,,

,,(disk)




 

 

8 

Traction on the toroidal disk in y, over the local limiting 

shear stress, 
 

 tyx

tyx

L

zy

,,

,,(disk)




 

 

9 

Resultant traction on the toroidal disk, over the local 

limiting shear stress, 
   

 tyxL

zyzx

,,

2 (disk)2 (disk)



 
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Output file:     tPfuvab.DAT 

 This file contains the dimensions of the contact ellipse. The results 

may be interpolated through time steps. 

Column Variable Unit 

1 Time, t s 

2 Supported load, P N 

3 Working angle,  (see figure 7.3) deg () 

4 Entraining speed of the roller in x, uroller m/s 

5 Entraining speed of the toroidal disk in x, udisk m/s 

6 Entraining speed of the roller in y, vroller m/s 

7 Entraining speed of the toroidal disk in y, vdisk m/s 

8 Length of the contact-ellipse semi-axis x, Dx m 

9 Length of the contact-ellipse semi-axis y, Dy m 

 

 

 

 

Output file:     thp.DAT 

 This file contains results about the film thickness and the overall traction 

coefficients. 

Column Variable Unit 

1 Time, t s 

2 Central film thickness,  th ,0,0  m 

3 Minimum film thickness,  thmin  m 

4 Maximum Hertzian pressure,  tp0  GPa 

5 Overall traction coefficient for the roller,  troller   

6 Overall traction coefficient for the toroidal disk,  tdisk   
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Output file:     txyzs1t1.DAT (optional) 

 This optional file contains subsurface-stress results for the roller. 

Column Variable Unit 

1 Time, t s 

2 x (x-distance from the centre of the contact) m 

3 y (y-distance from the centre of the contact) m 

4 z (z-distance from the surface, below the surface) m 

5  tzyxxx ,,,(roller)  Pa 

6  tzyxyy ,,,(roller)  Pa 

7  tzyxzz ,,,(roller)  Pa 

8  tzyxxy ,,,(roller)  Pa 

9  tzyxyz ,,,(roller)  Pa 

10  tzyxzx ,,,(roller)  Pa 

 

 

Output file:     txyzs2t2.DAT (optional) 

 This optional file contains subsurface-stress results for the toroidal disk. 

Column Variable Unit 

1 Time, t s 

2 x (x-distance from the centre of the contact) m 

3 y (y-distance from the centre of the contact) m 

4 z (z-distance from the surface, below the surface) m 

5  tzyxxx ,,,(disk)  Pa 

6  tzyxyy ,,,(disk)  Pa 

7  tzyxzz ,,,(disk)  Pa 

8  tzyxxy ,,,(disk)  Pa 

9  tzyxyz ,,,(disk)  Pa 

10  tzyxzx ,,,(disk)  Pa 
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